
Keeping Authorities
“Honest or Bust” with
Decentralized Witness Cosigning

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky
– Yale University

Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoff, Bryan Ford
– Swiss Federal Institute of Technology Lausanne (EPFL)

IEEE Security & Privacy – May 24, 2016

We depend on many authorities
Conceptually simple but security-critical services

• Time Services (NTP)

• Digital Notaries

• Naming Authorites

• Certificate Authorities

• Randomness Authorities (e.g., Lotteries)

• Software Update Services

But are authorities trustworthy?

But are authorities trustworthy?

But are authorities trustworthy?

But are authorities trustworthy?

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

Deep Dependence on Authorities

Alice

Browse Web

Send Text-Message

Software
download, update

Bob

Synchronize
Clock

How does an Internet client
name and authenticate
sites, services, users, software?

Deep Dependence on Authorities

Alice

?
What is:
● The current time?
● Amazon's SSL public key?
● Bob's IM public key?
● Latest version of App?

Respect my
Authoritah!

Bob

Authorities Make & Sign Statements

Alice

Bob

“Bob's public key is Y.”

“The time is 3PM.”

“Amazon’s public key is X.”

“The hash of latest iOS is Z.”

Problem #1: Authority Compromise

Alice

Fake

Fake Bob

Fake
Bob

Fake

● MITM attack
websites

● Impersonate
users

● Send malicious
updates

Problem #2: Weak Links
Clients often depend on many authorities:
e.g., hundreds of CAs trusted by web browsers

● Any CA can issue cert
for any domain name

Attacker often needs to compromise only one

● Weakest-link security

● @#$% happens

– DigiNotar,
Comodo,
CNNIC/MCS

Problem #3: Secret Key Portability
● Attacker need not

compromise authority
“in-place”

● Instead steal
the authority's
secret key

– Use it to create
an “evil twin”
on attacker's turf

– Avoid detection
by confining use
to specific targets

– Block targets from
reporting to real authority

Freetopia

Tyrannia
Fake

Fake Bob

Fake

Fake

Problem #4: Everybody Wants In
Hackers, organized crime, governments…

Problem #4: Everybody Wants In
Hackers, organized crime, governments…

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

What To Do?

We have to assume that no individual…

● Hardware platform

● Software system

● System/network administrator

● Authoritative organization

…is invulnerable to compromise (or coercion)

Decentralize the Authorities!

Split trust across independent parties

● So system resists compromise by individuals

● From weakest-link to strongest-link security

● Decentralized resistance to failure, coercion

Example: Tor Directory Authority
Split across ~10 servers – but is this enough?

● Could attacker hack or coerce ~5 operators?

(image credit: Jordan Wright)

http://jordan-wright.com/blog/2015/05/14/how-tor-works-part-three-the-consensus/

Trust-splitting needs to scale

Weakest-link:
T = 1

Strongest-link:
T = 2-10

Collective
authorities:

T = 100s,1000s

Trust-splitting needs to scale

Must incorporate all diversity that makes sense

● Not just ~10 parties “picked by someone”

Could we decentralize…

● TLS certificate validation and signing
across the hundreds of certificate authorities?

● DNSSEC root zone maintenance and signing
across the 1000+ worldwide TLD operators?

● A national cryptocurrency
across the thousands of US national banks?

Make overall security grow as scale increase?

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

Not Gonna Happen Overnight…

A First Step: Transparency

More readily achievable near-term

● Who watches the watchers?
Public witnesses!

Ensure that any authoritative statement:

● Is exposed to public scrutiny

● Conforms to checkable standards

before clients will accept statement

Key: practical to “retrofit” existing authorities

Witnesses

Respect my
Authoritah!

Witnesses

Decentralized Witness Cosigning

Authority

“Bob's public key is Y.”

“The time is 3PM.”

“Amazon’s public key is X.”

“The hash of latest iOS is Z.”

Public Logs
Alice

Verification:
signed by authority
and ≥T witnesses?

Is the Signed Statement “Good”?
In general, witnesses don’t (and can’t) know for sure

● Does public key X really belong to Bob?

● Does software image Y have a secret backdoor?

But witnesses can still ensure all signatures are public

● If authority coerced or its keys used to produce
bad statement, attacker can’t ensure its secrecy

– Backdoors possible but must “hide in plain sight”

● Creates “Ulysses Pact” deterrent against coercion

– “the point…is to keep governments from even trying to
put secret pressure on tech companies, because the
system is set up so that the secret immediately gets out”
- Cory Doctorow, 10-March-2016

http://boingboing.net/2016/03/10/using-distributed-code-signatu.html

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

Setup: Keypairs and CoSi Groups

Individual Keypairs:

Standard Schnorr
(Ed25519)
• Private key: k

• Public key: K = gk

CoSi group:

List of public keys

● K1, K2, …, KN

Assumptions:

● Verifier has full list

– (nonessential)

● All keys self-signed

– (important to avoid
related-key attacks)

Schnorr Signature
• Generator g of prime order q group

• Public/private key pair: (K=gk, k)

Signer Verifier

Commitment

Challenge

Response

V=gv

r = (v – kc)

c = H(M|V)

Commitment recovery

Challenge recovery

Decision

V' = grKc

c’ = H(M|V’)

c’ = c ?

Signature on M: (c, r)

= gv-kcgkc = gv = V

V

c

r

Schnorr Multisignature
• Key pairs: (K1=gk

1, k1) and (K2=gk
2, k2)

Signer 1 Verifier

Commitment

Challenge

Response

V1=gv1

r1 = (v1 – k1c)

c = H(M|V1)

Commitment recovery

Challenge recovery

Decision

V' = grKc

c’ = H(M|V’)

c’ = c ?

Signature on M: (c, r)

V1

c

r1

c = H(M|V)

V2

r2

Signer 2

r2 = (v2 – k2c)

V2=gv2

c

Signature on M: (c, r1)

K=K1*K2

V=V1*V2

r=r1+r2

Same signature!

Same verification!

Done once!

CoSi Protocol Signing Rounds

1. Announcement Phase

2. Commitment Phase

3. Challenge Phase

4. Response Phase

V3 = gv3,
V3 = V3

CoSi Commit Phase

Tree computation of:

● Commits Vi

● Aggregate
commits Vi

Collective challenge c
is hash of
aggregate commit

V4 = gv4,
V4 = V4

V2 = gv2,
V2 = V2V3V4

V1 = gv1,
V1 = V1V2...VN

Challenge
c = H()

r3 = v3 - k3c,
r3 = r3

CoSi Response Phase

Compute

● Responses ri

● Aggregate
responses ri

Each (c,ri) forms

valid partial signature

(c,r1) forms

complete
signature r4 = v4 - k4c,

r4 = r4

r2 = v2 - k2c,
r2 = r2+r3+r4

r1 = v1 - k1c,
r1 = r1+r2+...+rN

Unavailable Witness Servers

Assume server failures are rare but non-negligible

● Persistently bad servers get administratively booted

Exceptions: If a server A is down, proceed anyway

● Modified collective key: K’= K * K-1
A

● Modified commitment: V’= V * V-1
A

● Modified response: r’= r – rA

Verification: CoSi signature includes roll-call bit-vector

● Enables verifier to recompute modified public key K’

● Can use any criteria to decide if “too many” missing

Variations (see paper for details)

● Complex/contextual verification predicates

– Witness subgroups, weights, expressions, …

● Minimizing cothority certificate size

– Via Merkle key-trees

● Tolerating network churn

– Via binomial swap forests (Cappos, San Fermin)

● Tolerating cosigner churn

– Avoiding restarts via commit trees

● Single-pass CoSi for asynchronous networks

– Via BLS signatures, opportunistic signature combining

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

Experimental Evaluation

Experiments run on DeterLab network testbed

– Up to 32,768 virtual CoSi witnesses

– Multiplexed atop up to 64 physical machines

● introduces oversubscription overhead, unfortunately

● Conservative results, likely worse than “real” deployment

– Impose 200ms roundtrip latencies between all servers

● to simulate globally-distributed witness group

Future: deploy, evaluate at scale on “real Internet”

– Evaluate impact of high node, network churn

– See paper for approaches to handling if/when needed

Results: Collective Signing Time

https://www.isi.deterlab.net/

Results: Verification Cost

Results: Collective Signature Size
Ed25519: up to 512x smaller than N signatures

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

The Transparency Challenge

Alice

Respect my
Authoritah!

Bob

Fake

Fake Bob

Fake

Existing Transparency Solutions

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

● Perspectives
● Certificate Transparency
● AKI, ARPKI
● CONIKS

!!
!!

!!

!!

Freetopia

An Important Assumption

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

Takes time,
may compromise
alice's privacy

Assumes Alice can,
and is willing to,
gossip with
witnesses

Tyrannia Freetopia

A Different Scenario

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

Gen. Rex
Fake CA

Fake Log

Gossip versus Collective Signing

Gossip can't protect Alice if she...

● Can't (because she's in Tyrannia)

● Doesn't want to (for privacy), or

● Doesn't have time to

cross-check each authoritative statements.

Collective signing proactively protects her
from secret attacks even via her access network.

● Attacker can't secretly produce valid signature

An “Extreme” Scenario

What if an attacker controls the target device,
wants to secretly coerce the device’s vendor
to sign a back-doored operating system image?

● A phone sealed in a forensics lab can’t gossip!

– Certificate Transparency can’t reveal backdoor

● Only protection is to bind the transparency
proactively into the device-verified signature

Talk Outline

• The trouble with trusting authorities

• Grand challenge: decentralize the authorities!

• Baby step: decentralized witness cosigning

• CoSi: scalable collective Schnorr/Ed25519 signatures

• Experimental evaluation: scalability, signature size

• Comparison with prior transparency approaches

• Status, future work, and conclusions

Prototype available; give it a try!

Go to https://github.com/dedis/cosi

● Binaries: see releases

● Source: go get -u github.com/dedis/cosi

cosi sign -g group.toml -o sig msg_file

cosi verify -g group.toml -s sig msg_file

Run your own witness server: cosi server

Verifier libraries for C, Go – see README

Status, Incremental Deployment
Still experimental! But…

● DEDIS lab committed to supporting,
assisting with integration/deployment efforts

● Don’t want to trust collective signatures yet?
Add in extension field alongside individual sig

● Don’t want to trust protocol, server liveness?
Fork/exec ‘cosi sign’, set timer, kill if needed

● Don’t want to trust cosi software?
Sandbox it! Needs almost nothing to run.

Send feedback privately or discuss publicly on
https://groups.google.com/forum/#!forum/cothority

Other uses of collective signing

(credit: Tony Arcieri)

Other uses of collective signing
“Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing”

● To appear at USENIX Security 2016

● Draft: http://arxiv.org/abs/1602.06997

1 2 3

1 2 3 4 5

...

5-10 sec

Bitcoin
Cothority

Miner
Witnesses

Key-Block

Micro-Block

depends on

6

Co-Signature

Conclusion
Grand challenge: decentralize all the authorities!

Practical baby step: decentralized witness cosigning

● Ensures that for any signed statements that exists,
many parties have witnessed, publicly logged it

– Protects even clients that can’t gossip

● Can incrementally add to existing authorities

● CoSi protocol scales to large witness groups

Available: https://github.com/dedis/cosi

Public question/answer, discussion forum:
https://groups.google.com/forum/#!forum/cothority

https://github.com/dedis/cosi
https://github.com/dedis/cosi/releases
https://github.com/dedis/cosi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Real-World Authorities
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Schnorr Signature
	Schnorr Multisignature
	CoSi Protocol
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Conclusions

