Certificate Cothority: Towards
Trustworthy Collective CAs

Ewa Syta, lulia Tamas, Dylan Visher, David Wolinsky, Bryan Ford

Yale University HotPETs 2015

“Authorities” are Everywhere

* Conceptually simple but security-critical services

* Logging and Time-stamping Authorities m

ONSSE

* Naming Authorities @

SECUREY
by Afilias

* Randomness Authorities (e.g., lotteries)

Digital Notaries

Certificate Authorities (CAs) \/'griSigrf @thawte

its a trust thing

Talk Outline

* Troubles with Certificate Authorities

Designing Certificate Cothorities
* Scalable Collective Schnorr Log-Signing

* The Availability Problem

Prototype and Preliminary Results

Deployment Scenarios

Conclusions

Certificate Authorities

EFF SSL Observatory

~650 CAs trusted by
Mozilla or Microsoft

\"?'F :

Any CA can issue certs
for any domain

Prime key target
* MITM attack power

Breaches do happen
* DigiNotar'11
* Comodo’11

° CNNIC/MCS'IS ' \ SSl .g.i;:.

g P
\

/] D

Certificate Authorities

google.com

Certificate Authorities

Fake Google.com
l(MlTMAtt cker)

[f we trust many CAs...

* Attacker gets to choose which one to attack
—> Weakest-link security overall

Current Defenses

* Oversight from industry organizations, browser and OS
vendors

* Pinning: embed certificates/CAs into the browser

* Logging and monitoring
Certificate Transparency (CT) [Laurie’11]

Convergence [Marlinspike’11]
AKI [Kim’13]
ARPKI [Basin’14]

PoliCert [Szalachowski’14]

Certificate Transparency

E i%\ iB

\ / CAs
| Fake Google com

EEEB

Log servers

CT’'s Weakness: Privacy

\

/ / CAs

EEEB

lLog servers

| Fake Google.com
=k(|v||T|v| Attacker)

’” ;‘;‘-
e

uuuuuuuuuuuuuuuuuuuuuuuuu

ALJAZEERA iB rate %ay

Go e A/
gl Morytors/ ditors WP

CT’s Weakness: Retroactive

Security
%& W}

google.com
\ / CAs
| Fake Google.com Certtnmefsti::;lg = /
= A (MITM Attacker)
3
o

Bad cert detected

Client L ng' Cert revoked ¥ ﬂ ﬂ ﬂ }

Morytors/A/ ditors ¥

lLog servers

CT’s Weakness: Blocking

R a& .@

/ CAs
| Fake Google.com B /
A
?}MTM Attacker) Dave the Dictator

lLog servers

ﬂﬂﬂ i

Mo /vtors/A/ ditors %

We need Collectlve Authorltles

Fake Goo

}XMITM Attack Need: collective validation, sign-off

T‘ Collective Authority = Cothority

Client

B =y
\ \7 Y

\ . Mo/vtors/A/ollto;s ‘o

——————————— ~ wRALE

Talk Outline

* Troubles with Certificate Authorities
* Designing Certificate Cothorities
* Scalable Collective Schnorr Log-Signing

* The Availability Problem
* Prototype and Preliminary Results
* Deployment Scenarios

* Conclusions

Certificate Cothority (CC)

* Many parties collectively sign, not just a single CA
 All participating CAs can propose new certs, all verify
* Hundreds or thousands of diverse participants

* CAs, log servers, monitors, auditors
* Easy to include new participants

* Collective signature = many servers sign off
* Any CA can block signature if cert violates policy
* Simple verification as if there is one CA
* Secure unless many servers compromised

Why Certificate Cothority?

From this
model...

Why Certificate Cothority?

To this model

Talk Outline

* Troubles with Certificate Authorities

Designing Certificate Cothorities
* Scalable Collective Schnorr Log-Signing

* The Availability Problem

Prototype and Preliminary Results

Deployment Scenarios

Conclusions

CoSi: Collective Signing

public log
| ‘ recordijA{ 2 I record: 4(}&34-{ 3] record gﬁg

each record collectively signed

/,--\ﬁﬁgf \?/= =\\

/ leader *-.--~\\

| |

Collective A
Authority | followers "'r
(cothority) N/
':ij, -

CoSi: Scalable Collective Signing

* CoSi builds upon existing primitives
* Merkle Trees [Merkle’79]

* Schnorr Signatures [Schnorr’89] and Multisignatures
[Itakura’83],[Ohta’99],[Micali’01],[Bellare’06]

* Our contribution
* Scale multisignatures to thousands of nodes

* Communication trees and aggregation, as in scalable
multicast protocols

Merkle Trees

* Every non-leaf node labeled with the hash of the
labels of its children.

* Efficient verification of items added into the tree

top hash
G= H(H(E)IH(F))

E=H(H(A)[H(B)) F=H(H(C)|H(D))

H(A) H(B) H(C) HD

A B C D

Schnorr Signature

 Generator g of prime order g group
* Public/private key pair: (K=g, k)

Signer Verifier
Commitment V=gV —_—> Y,
Challenge C D c=H(M|V)
Response r=(v-kc) —m o> r

Signature on M: (c, r)

Commitment recovery V' = grke = gv-kcgkc =g'=V

Challenge recovery ¢ = H(M|V)

Decision c=c?

Collective Signing

* Our goal is collective signing with N signers
* Everyone produces a signature
* N signers-> N signatures -> N verifications!
* Bad for hundreds or thousands of signers!

* Better choice — a multisignature

Schnorr Multisignature
* Key pairs: (K,=g*, k,) and (K,=g*, k,)

Signer 1 Signer 2 Verifier

Commitment V,=g“ =g V, V, |V=V *V,

Challenge C c € c=H(M]|V,) c=H(M|V)

Response ry = (vy — ki€) F=rak,C) 1, r, |r=rg+r,
Collective Signature %(c, r) Same signature!

Commitment recovery same verification! V' = g'k¢ K=K,*K,
Challenge recovery Done once! ' _WV,)

?

Decision c=c?

CoSi Protocol

1. Announcement Phase ﬁ M
2. Commitment Phase /&

3. Challenge Phase ﬁ c= H(M|root)

r, =ry+rt.+ry (aggregate)
4. Response Phase /

ry=vy—Kksc (individual)

Collective signature (c, r;)

V.=V, V,..V, (aggregate)

V,=g¥» (individual)

Talk Outline

* Troubles with Certificate Authorities (CAs)

Designing Certificate Cothorities
* Scalable Collective Schnorr Log-Signing

* The Availability Problem

Prototype and Preliminary Results

Deployment Scenarios

Conclusions

Exceptions

* |If node A fails, the remaining nodes can still provide a
valid signature but

* For a modified collective key: K'= K * K1,

* Client gets a signature under K" and an exception e,

* e, also lists conditions under which it was issued

* Client accepts only if a quorum of nodes maintained

Life Insurance Policy

* Node "insures" its private key by depositing the key
shares with other servers (insurers)

* |If node fails, others recover the key and continue
* Use verifiable secret sharing

Talk Outline

* Troubles with Certificate Authorities
* Designing Certificate Cothorities
* Scalable Collective Schnorr Log-Signing

* The Availability Problem
* Prototype and Preliminary Results
* Deployment Scenarios

* Conclusions

Implementation

* Implemented in Go with DeDis crypto library
* https://github.com/DeDiS/prifi/tree/master/coco
* https://github.com/DeDiS/crypto

* Schnorr multisignatures on Ed25519 curve
* AGL's Go port of DJB's optimized code

* Run experiments on DeterLab
* Up to 4096 virtual CoSi nodes
* Multiplexed atop up 32 physical machines
* Latency: 100ms roundtrip between two servers

Preliminary Results

Latency vs. Number of Hosts

3
275
>
9
[
£
w
= e=jmmmin
go 1.5
g 4 e max
S 1
= m—
n? [avg
905 = =

0

64 256 1024 4096

Number of Timestamp Servers

Talk Outline

* Troubles with Certificate Authorities
* Designing Certificate Cothorities
* Scalable Collective Schnorr Log-Signing

* The Availability Problem
* Prototype and Preliminary Results
* Deployment Scenarios

* Conclusions

Deployment Scenarios .. amsisous

Ideal case: everyone in certificate cothority
* Everyone gets to check certs but difficult to deploy

Browser-driven certificate cothority

* Browser vendor acts as a CC leader and CAs gradually join
(eventually must) to remain in the root store

Root-CA-centric certificate cothority

* Root-CA as a leader and intermediate CAs gradually join
(eventually must) to retain their signing power

Log server-driven certificate cothority
* Backward compatible
* CT-style: endorse signed certificate timestamps (SCTs) | -

Most Deployable

Conclusions

* We can and should build a better CA system
* There seem to be no technical reason not to!
* Proactively secure: no bad certs endorsed
* Privacy-friendly: users don’t gossip their browsing history

* Build it using cothorities
* Strongest-link security
* Built upon well-understood cryptographic primitives
* Scale to thousands of participants with reasonable delays

* But it will definitely take time and effort

Thank you!

Let’s chat:)

More details
“Decentralizing Authorities into Scalable Strongest-Link Cothorities”
arXiv:1503.08768

ewa.syta@yale.edu

