Scalable, Accountable, Traffic Analysis Resistant Anonymity in Dissent

> Bryan Ford Yale University

project team:

David Isaac Wolinsky, Henry Corrigan-Gibbs, Joan Feigenbaum, Vitaly Shmatikov, Ewa Syta, Aaron Johnson, Ramakrishna Gummadi

Columbia University – September 25, 2012

Talk Outline

- Online anonymity: state-of-the-art, weaknesses
- Dining cryptographers: a cool, useless toy?
- Making DC-nets scale to "real" systems
- Accountability in many flavors
- Anonymity scavenging and intersection attacks
- Conclusion

Why Anonymity?

Plays fundamental roles in democratic societies

- Discuss sensitive topics, freedom of speech
- Voting in elections or deliberative organizations
- Peer review processes
- Collaborative content creation, e.g., Wikipedia
- Protect dissidents in authoritarian states
- Whistleblowing
- Private bidding in auctions

A Protest in Repressistan

A Protest in Repressistan

Alice, Bob, Charlie, Dave, & friends

- Citizens of Repressistan
- Wish to connect, organize online safely

Government is powerful but not all-powerful

- Can't just "turn off Internet" indefinitely or throw all protesters in jail: cost is too high
- Must identify and make examples of the movement's outspoken "activist leaders"

Alice & friends need "strength in numbers"

Being Anonymous: Naive Ways

Assume the Internet is "anonymous enough"

• IP addresses never provided real anonymity; many ways to track users, machines, browsers

Use centralized anonymizing relays/proxies

• Central point of failure, prime compromise target

Being Anonymous: Better Ways

MIX networks, onion routing systems: e.g., Tor

- Tunnel through a series of anonymizing relays
- Protects even if any one is malicious or hacked

Anonymity is Hard

Tor: The Onion Router [Dingledine'04]

- Practical, scalable, convenient, widely deployed
- Likely best anonymity protection available now

But many known attacks, weaknesses

- Traffic analysis, traffic fingerprinting attacks
- Long-term intersection attacks [Kedogan'02]
- DoS attacks against anonymity [Borisov'07]
- Side-channel leaks/attacks [Abbott'07]

Traffic Analysis: Example 1

- Alice in Repressistan uses Tor to post on blog server hosted in Repressistan
- State ISP controls both entry and exit hops
- Fingerprint & correlate traffic to deanonymize

Traffic Analysis: Example 2

- Bob in Dictatopia posts via Tor to blog hosted in "The Free World"™
- Tor Metrics: 50,000 users/day connect from Dictatopia
 - Good anonymity, right?
- But ISP logs tell police when users are online;
 blog post has timestamp

Jul-2012

- How many users are online at same time Bob posts?
 - ~5,000 at 7PM?
 ~500 at 5AM?

Sep-2012

Aug-2012

Intersection Attack: Example

- Bob signs posts with pseudonym "AnoniBob"
 - Posts 3 signed messages at times T₁, T₂, T₃
 - Police find sets of users online each time, intersect

Maybe Anonymity is **Bad**?

Vulnerable to anonymous abuse by users, no **accountability** for misbehavior

- No one knows you're a dog
- So anybody can behave like one

Cause: unlimited supply of "free" pseudonyms

- Create sock-puppet "supporters" in online forums
- Vote many times in online polls, elections
- Get banned, respawn at new IP address
 - loser is *next* user of old IP address or Tor exit relay

Talk Outline

- Online anonymity: state-of-the-art, weaknesses
- Dining cryptographers: a cool, useless toy?
- Making DC-nets scale to "real" systems
- Accountability in many flavors
- Anonymity scavenging and intersection attacks
- Conclusion

Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...

• Ex. 1: "Alice+Bob" sends a 1-bit secret to Charlie.

Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...

• Ex. 2: Homogeneous 3-member group anonymity

Dining Cryptographers (DC-nets)

Tantalizing theoretical properties

- Unconditional anonymity (if using "real" coins)
- Security against traffic analysis & collusion
 - Anonymity set = nodes not colluding against victim

Never successfully used in practical systems

- Easy to disrupt anonymously, no accountability
 - Malicious member can jam by sending random bits
- Not readily scalable to large groups
 - Especially with node failure, network churn

Why DC-nets Doesn't Scale

- **Computation cost:** *N* nodes each must flip, XOR together *N-1* shared coins per output bit
- Typical network churn: if any participant disappears before round is complete, all nodes must start over
- Likelihood of disruption: large groups more likely to have "bad apples" who jam some/all communication

Why Not Just Use Small Groups?

Exactly what **Herbivore** did [Sirer'04]

- Pioneering effort at making DC-nets practical
- Divides large network into many small cliques
 - If one gets jammed, join another
- Supports many users total, but guarantees anonymity only in user's own clique
 - Small anonymity sets, max 40 in experiments

The Dissent Project ("DIning-cryptographers Shuffled-SEnd NeTwork")

Fresh attempt to make DC-nets practical – now 2nd year of 4-year DARPA-funded project

Goals:

- Scale to large anonymity sets, not just networks
- Add accountability to limit anonymous abuse
- Tolerate both normal churn and disruption
- Quantifiable security against strong adversaries

Selected Dissent Papers

(available at http://dedis.cs.yale.edu/2010/anon/)

Covered in part by this talk:

- "Dissent: Accountable Group Anonymity" [CCS'10]
- "Dissent in Numbers: Making Strong Anonymity Scale" [OSDI'12]
- "Dining in the Sunshine: Verifiable Anonymous Communication" (draft)
- "Scavenging for Anonymity with BlogDrop" (abstract) [ProvPriv'12]

Talk Outline

- Online anonymity: state-of-the-art, weaknesses
- ✓ Dining cryptographers: a cool, useless toy?
- Making DC-nets scale to "real" systems
- Accountability in many flavors
- Anonymity scavenging and intersection attacks
- Conclusion

Multi-Provider Cloud Model

Dissent group (anonymity set) consists of:

- Large-ish number of unreliable clients (users)
- A few servers, each from a reputable provider

Communication Structure

- Each client connects with one upstream server
- All servers coordinate directly with each other
 - Best if servers are "nearby" low delay, high BW

"Anytrust" Assumption

Clients do not trust upstream (or any one) server

 Trust only that some server – any server – will not collude with all others against client

Sparse Coin-Sharing in DC-nets

Every pair of nodes needn't share coins/keys...

- Fewer shared coins \rightarrow faster
- Reduces anonymity *if*, and only *if*, attack nodes split key-sharing graph
- Example: "ring" graph
 - OK if only 1 attack node
 - Bad if 2 or more collude

Dissent's Coin-Sharing Structure

Each client shares coins with every server

- Provided there exists one honest server, that server shares coins with all honest clients
 - Optimal anonymity *if* assumption holds :)
 - No anonymity if it doesn't :(

26

Why Client/Server Coin-Sharing?

Two key benefits:

1.Reduce computation load on clients

 Compute only *M* ≪ *N* pseudo-random coins per bit of anonymous transmission bandwidth

2.Servers can adapt to slow or offline clients

- Client ciphertexts depend *only* on servers, not on which other clients are online in this round
- Servers collect client ciphertexts until a deadline, then compute *their* ciphertexts based on results
- No wait for slowest client, or restart on disconnect 27

Group of 500 PlanetLab Clients

Without deadline, 50% of rounds take over 1 sec, 20% over 5 sec, 15% timeout

With deadline, 90% of rounds take < 0.4 sec, *no timeouts*

Scaling to Thousands of Clients

Anonymity sets **100 × larger** than previously demonstrated

 Herbivore, Dissent v1:
 ~40 clients

Sub-second latencies in 1000-client groups

WiNon: Web Browsing via Dissent

Fast enough for interactive use in small local-area groups, e.g., WiFi

"Strong, small" anonymity sets complementing "large, weak" sets Tor offers

WiNon Browsing Latency

5 servers, 24 clients, WiFi LAN → usability comparable to Tor

Illustrative only – "apples-tooranges"

Why is Dissent+Tor Interesting?

Defend against "Little Brother" and "Big Brother"

Scheduling DC-net Transmissions

How does each client know when to transmit?

- Like airwaves, DC-nets messages get garbled if more than one client transmits at once
- Dissent uses verifiable shuffles [Neff'01] to form schedule of anonymous transmission slots
 - See papers for details
- Scalable shuffling in Dissent also relies on multi-provider cloud model, anytrust assumption

Scalable Shuffling at a Glance

Scalable Shuffle Comparison

Talk Outline

- Online anonymity: state-of-the-art, weaknesses
- ✓ Dining cryptographers: a cool, useless toy?
- Making DC-nets scale to "real" systems
- Accountability in many flavors
- Anonymity scavenging and intersection attacks
- Conclusion
Accountable Anonymity

Accountability can mean many things

- "Accountability & Deterrence" [Feigenbaum'11]
 In Dissent, accountability means:
- **Disruption-resistance:** group can trace, expel any member attempting to jam communication
- **Proportionality:** each member gets *exactly* 1 bandwidth share, 1 vote, 1 pseudonym, etc.

In Dissent, "accountability" does **not** mean "de-anonymize people who say things I don't like"

Jam-Proofing DC-nets: 4 Ways

1.Herbivore: flee to new group if jammed

- Must keep groups small to minimize jamming risk
- Could land in a group that's not jammed because it's *completely* owned by adversary! [Borisov'07]

2.Dissent v1 [CCS'10]:

use verifiable shuffle to distribute *assignments* with ciphertext hashes before each round

- Makes jamming easy to identify and trace
- Requires slow, expensive shuffle for every round

Jam-Proofing DC-nets: 4 Ways

3.Dissent [OSDI '12]:

retroactive disruption-tracing "blame" protocol

- Victim finds a "witness a bit" attacker flipped $0 \rightarrow 1$; broadcasts pointer to witness bit in "blame shuffle"
- Nodes reveal all coins contributing to witness bit, find source of "odd-one-out" that flipped it to 1
- **Upsides:** minimal overhead when no jamming, $\geq \frac{1}{2}$ chance of catching jammer in each round
- **Downsides:** complex, slow due to blame shuffle; attacker with *f* nodes can stop progress for *f* rounds

Round Latency Breakdown

Jam-Proofing DC-nets: 4 Ways

- **4."Dining in the Sunshine**" [see Dissent page]: *proactive* verifiability via cryptographic proofs
 - Clients encode messages in algebraic groups, show correct construction via discrete log proofs
 - 3 schemes: pairing-based [Golle/Juels'04], plus faster schemes usable with Schnorr or EC groups
 - Upsides: disruptors cannot jam communication; ciphertexts can be build offline and "dropped off"; potential asymptotic benefits in large groups
 - **Downsides:** complex, slow and CPU-intensive, especially in small groups, due to group arithmetic

Retroactive vs Proactive: The Bad News

Retroactive vs Proactive: The Good News

Talk Outline

- Online anonymity: state-of-the-art, weaknesses
- ✓ Dining cryptographers: a cool, useless toy?
- Making DC-nets scale to "real" systems
- Accountability in many flavors
- Anonymity scavenging, intersection attacks
- Conclusion

Anonymity Scavenging

Bob in Dictatopia posts to dissident blog each day

 Tolerates latency, needs large anonymity set, even under traffic analysis & intersection attack: risks jail time if identity discovered

Alice wants to microblog casually on blocked sites

 Needs low latency, but low security sensitivity: "everyone does it" → unlikely to be prosecuted
 How can we meet both Alice's and Bob's needs?
 Better, how can Alice (unwittingly) help Bob?

Dropoff Communication Model

Many users come online per day at different times

- Drop DC-nets ciphertext into Bob's dropoff bin
- Servers "open" bin, publish contents at midnight

Scavenging from Diverse Users

Alice frequently microblogs low-sensitivity chitchat

- Gets lower anonymity against traffic analysis
- But contributes to Bob's large anonymity set

Work-in-Progress

Builds on, depends on verifiable DC-nets

- Dropped-off ciphertexts *must* be verifiable
 Extend DC-net traffic analysis security "over time"
- Can we get 50,000-user anonymity in a day?
 Under some conditions we think we can address

long-term intersection attacks this way too

- Becomes "real-time" system for sensitive users
- Bob can avoid leaking identity even long-term if he (and others) show up at least once per day

Talk Outline

- Online anonymity: state-of-the-art, weaknesses
- ✓ Dining cryptographers: a cool, useless toy?
- Making DC-nets scale to "real" systems
- Accountability in many flavors
- Anonymity scavenging, intersection attacks
- Conclusion

Summary and Current Status

What we've done so far:

- Made DC-nets scale to 5000+ node groups
- Wide-area microblogging, local-area browsing uses
- Developed 3 new approaches to accountability

In-progress:

- Proactively verifiable DC-nets (mostly done)
- Scavenging large anonymity sets across time
- Protection against long-term intersection attacks
- Very experimental code available on GitHub

Conclusion

The Dissent project asks: can we use dining cryptographers as a foundation to get stronger, quantifiable anonymity in practice?

- Anonymity: even against traffic analysis
- Accountability: resistant to sybil attacks, disruption
- Eventually: resistance to intersection attacks??

We're optimistic, but many open questions!

http://dedis.cs.yale.edu/2010/anon/