
The Parrot is Dead: 
Observing 

Unobservable Network 
Communications  

Amir Houmansadr    Chad Brubaker    Vitaly Shmatikov  
 



Internet Censorship 
�  The Internet is a big threat to repressive regimes! 

�  Repressive regimes censor the Internet: 
�  IP filtering, DNS hijacking, Deep packet-inspection, 

etc. 

�  Circumvention systems 

2 



Censorship Region The Internet 

X 

Allowed  
Destination 

Blocked 
Destination 



Censorship Region The Internet 

X 
Blocked 

Destination 

DPI 



 We need unobservable circumvention 

 

Censors should not be able to identify circumvention 
traffic or end-hosts through passive, active, or 
proactive techniques 



Censorship Region The Internet 

Let’s hide! 



Parrot systems 
�  Imitate a popular protocol  

�  SkypeMorph (CCS’12) 

�  StegoTorus (CCS’12) 
�  CensorSpoofer (CCS’12) 



'E's dead, that's what's 
wrong with it! 

What's, uh...  
What's wrong with it? 



Censorship Region 
The Internet 

SkypeMorph 

A Tor node SkypeMorph 
Bridge 

Traffic Shaping 

SkypeMorph 
Client 



SoM header 

�  The start of  message (SoM) header field is MISSING! 

�  Single-packet identifier, instead of  sophisticated 
statistical traffic analysis 



Censorship Region 
The Internet 

SkypeMorph 

A Tor node SkypeMorph 
Bridge 

TCP control 

SkypeMorph 
Client 



No, no.....No,  
'e's stunned! 



SkypeMorph+ 
 

Let’s imitate the missing! 

 

 

�   Hard to mimic dynamic behavior  
�  Active/proactive tests 



Dropping UDP packets 



Other tests 

Test Skype SkypeMorph+ 

Flush Supernode 
cache 

Serves as a SN Rejects all Skype 
messages 

Drop UDP packets Burst of  packets in 
TCP control 

No reaction 

Close TCP channel Ends the UDP stream No reaction 

Delay TCP packets Reacts depending on 
the type of  message 

No reaction 

Close TCP connection 
to a SN 

Initiates UDP probes No reaction 

Block the default TCP 
port 

Connects to TCP ports 
80 and 443 

No reaction 



Now that's what  
I call a dead parrot. 



StegoTorus 
Client 

Censorship Region 
The Internet 

StegoTorus 

A Tor node StegoTorus 
Bridge 

HTTP 

HTTP 

Skype 

Ventrilo 

HTTP 



StegoTorus chopper 
�  Dependencies between links 



StegoTorus-Skype 

�  The same attacks as SkypeMorph 
�  Even more attacks! 



StegoTorus-HTTP   
�  Does not look like a typical HTTP server! 

�  Most HTTP methods not supported! 
Table III

RESPONSES TO DIFFERENT httprecon REQUESTS BY STEGOTORUS SERVER AND REAL HTTP SERVERS.

HTTP request Real HTTP server StegoTorus’s HTTP module

GET existing Returns “200 OK” and sets Connection to keep-alive
Arbitrarily sets Connection to
either keep-alive or Close

GET long request Returns “404 Not Found” since URI does not exist No response
GET non-existing Returns “404 Not Found” Returns “200 OK”
GET wrong protocol Most servers produce an error message, e.g., “400 Bad Request” Returns “200 OK”
HEAD existing Returns the common HTTP headers No response
OPTIONS common Returns the supported methods in the Allow line No response
DELETE existing Most servers have this method not activated and produce an error message No response
TEST method Returns an error message, e.g., “405 Method Not Allowed” and sets Connection=Close No response
Attack request Returns an error message, e.g., “404 Not Found” No response

Table IV
DISTINGUISHING CENSORSPOOFER FROM GENUINE SIP CLIENTS.

Attack Imitation requirement Adversary Typical SIP clients (e.g., Ekiga) CensorSpoofer
Manipulate tag in SIP OK Soft LO/OB/OM Nothing Client closes the call
SIP INVITE to SideProtocols

LO/OB/OM
Respond with “100 Trying” and “180 Ringing”,

fakeID@suspiciousIP Soft, Err “483 Busy Here”, “603 Decline”, or “404 Not Found”
Nothing

SIP INVALID SideProtocols,Err LO/OB/OM Respond “400 BadRequest” Nothing
SIP BYE with SideProtocols

LO/OB/OM
Respond “481 Call Leg/Transaction

invalid SIP-ID Soft, Err Does Not Exist”
Nothing

Drop RTP packets SideProtocols
LO/OB/OM

Terminate the call after a time period depending on
(only for confirmation) Soft, Network the client, may change codec in more advanced clients.

Nothing

A genuine SIP client returns a status message, e.g., “100
Trying” and “180 Ringing”, or “483 Busy Here”, or “603
Decline”, or “404 Not Found”. CensorSpoofer returns noth-
ing and, furthermore, cannot ever mimic the proper response
because, by design, it does not receive the censor’s INVITE.

Send an invalid SIP message. In response to any message
not defined by the SIP standard, a genuine SIP client returns
“400 BadRequest [Malformed Packet]”. CensorSpoofer re-
turns nothing. In contrast to the SIP INVITE probe, this test
is completely transparent to genuine callees.

Send a message for a non-existing call. Each SIP call has a
unique ID, which is negotiated in the call’s first packet. If the
censor sends a SIP message (e.g., BYE) for a random call
ID, a genuine SIP client returns “481 Call Leg/Transaction
Does Not Exist”. CensorSpoofer returns nothing. This test,
too, is transparent to genuine callees.

To prevent these SIP probing attacks, a CensorSpoofer
spoofer may change its IP address selection algorithm and
use similar probes to find addresses that are running genuine
SIP clients. This significantly reduces the set of addresses
that can be used for spoofing. The nmap-based selection
algorithm of [59], which is less accurate than SIP probing,
finds only 12.1% of 10, 000 random IP addresses to be
suitable for spoofing. Our SIP probes to 10, 000 random
addresses did not return a single host running IETF-based
VoIP software such as Ekiga. The main reason is that pro-
prietary VoIP services like Skype, Oovoo, and Google Voice
are significantly more popular than IETF-based services.

Instead of Ekiga, CensorSpoofer may attempt to mimic
a more popular proprietary service. This imitation will be
easily detectable due to CensorSpoofer’s use of spoofed IP
addresses. Genuine clients react in a certain way to probes

and manipulated messages, but CensorSpoofer cannot mimic
the right reaction because it does not actually receive the
probes sent to the spoofed IP address. This is a fundamental
design flaw that cannot be fixed.

Manipulating upstream packets.
Requirements: SideProtocols, Soft, Network
Adversary: Active, LO/OB/OM
According to the standard [53, § 6], the primary function
of RTCP is “to provide feedback on the quality” of RTP
sessions. This feedback may be used for “control of adaptive
encodings,” so one might expect that changes in network
bandwidth during an RTP session would result in RTCP
negotiations as clients adjust their VoIP codec. Nevertheless,
none of the tested VoIP clients, including Ekiga, Blink,
PhonerLite, and Twinkle, appear to react when RTP and
RTCP packets are dropped at various rates. Only dropping
all RTP packets for 10 seconds to 2 minutes, depending on
the client, results in the client terminating the call.

This allows easy detection of imitated sessions. Dropping
all RTP packets will cause a genuine RTP session to close,
but a CensorSpoofer session will not react. This attack is
acknowledged in [59], but described as expensive because it
interrupts genuine sessions. Note, however, that the censor
can use it only for confirmation, e.g., for calls that failed
SIP probing tests. If a more advanced implementation of
RTP/RTCP adjusts codecs according to the network condi-
tions, this behavior must be imitated, too.

X. RELATED WORK

Pfitzmann and Hansen [45] proposed definitions for
privacy-related concepts including unobservability. Unob-
servability has been interpreted as anonymity or plausible



Dummy  
host 

Censorship Region 
The Internet 

CensorSpoofer 

Censored 
destination 

Spoofer 

RTP upstream 

RTP downstream 

SIP  
server 

CensorSpoofer 
Client 



Dummy  
host 

Censorship Region 
The Internet 

CensorSpoofer 

Censored 
destination 

Spoofer 

RTP upstream 

RTP downstream 

SIP  
server 

CensorSpoofer 
Client 



Dummy  
host 

Censorship Region 
The Internet 

SIP probing 

Censored 
destination 

Spoofer 

RTP upstream 

RTP downstream 

SIP  
server 

CensorSpoofer 
Client 



'E's not pinin'! 
'E's expired and gone to 
meet 'is maker! 

No no!  
'E's pining! 



Lesson 1 
 

 

 

Unobservability by imitation is 

fundamentally flawed! 

 



Imitation 
Requirements 

Correct SideProtocols 

IntraDepend InterDepend 

Err Network 

Content Patterns 

Users Geo 

Soft OS 



Lesson 2 

 

 

Partial imitation is worse than no imitation! 



Alternative 

�  Do not imitate, but Run the target protocol 

 

Ø  IP over Voice-over-IP [NDSS’13] 

u Challenge: efficiency 



Thanks 


