Dissent: Accountable Anonymous
Group Messaging

Henry Corrigan-Gibbs and Bryan Ford

Department of Computer Science
Yale University

17t ACM Conference on
Computer and Communications Security
October 6, 2010

“Wikileaks” Problem

Alice

Eve

Image courtesy NASA Johnson Space Center

Alice

o
o,
o

Has a 646 MB
classified military
video from Irag

Alice

Is this video

authentic?

Alice

Wants to:

1. Anonymously publish
video to the group
¥ 2. Solicit anonymous
% co

Alice

12. Stop initial video b

£271 3. Alter Alice and Bob’s

" W\ 4. Submit many bad

Wants to:
1. Break anonymity

publication

reviews

reviews

e - -~ B O
- < ,ﬂ-’ _—_

The Question

How can group members communicate
efficiently and anonymously when:

1. all network communication is public,
2. Eve wants to block communication, and

3. group members’ messages are of vastly
different lengths?

Limitations of Existing Schemes

Method Weakness

Mix Nets, Tor Traffic analysis attacks

Group and Ring Traffic analysis attacks
Signatures

Voting Protocols Short, fixed-length
messages

DC Nets Anonymous DoS attacks

Brickell-Shmatikov Anonymous DoS attacks
Shuffle and fixed message length

Outline

Introduction to Dissent

How Dissent works
— Overall protocol: Variable-length shuffle
— Key component: Fixed-length shuffle

Prototype and experimental results
Goals for future work

Outline

Introduction to Dissent
How Dissent works

— Overall protocol: Variable-length shuffle

— Key component: Fixed-length shuffle
Prototype and experimental results

Goals for future work

Dissent

* Dissent is a protocol for latency-tolerant sender-
anonymous broadcast within a pre-defined

group of nodes:

1. Each group member secretly submits one
message per protocol round

2. Group members run the protocol

3. The protocol reveals to all members a
permutation of the message set

4. No group member knows the permutation
* We call this a shuffle protocol

Dissent guarantees...

* Integrity: Messages are received unmodified

* Anonymity: To identify the sender of a
message, all other members must collude

* Accountability: Members interfering with
message transmission will eventually be
identified

N.B.: These definitions are very informal. Please refer to our
paper for precise definitions.

Our Contributions

Dissent builds upon the Brickell-Shmatikov
anonymous data collection protocol (KDD 2006),

adding:

1. Accountability: Alice, Bob, and Chris can
identify Eve if she tries to alter messages or
block protocol progress

2. Communication efficiency with variable-

length messages: Group members do not
have to pad their messages to a fixed length

Outline

Introduction to Dissent

How Dissent works
— Overall protocol: Variable-length shuffle
— Key component: Fixed-length shuffle

Prototype and experimental results

Goals for future work

Conceptual Description

* Follows one group member (Chris) and his 646
MB video

— Every other group member follows the same steps as
Chris in parallel

e We assume:

— Every member has a signature verification key for
every other group member

— Existence of a wrapper protocol handling group
membership, liveness, protocol initiation, etc.
(See paper for details on the wrapper.)

Issue 1: Traffic Analysis

* How can Chris broadcast his 646 MB video
anonymously if attackers are listening in?

* Neither message structure nor length should
identify Chris as the true sender

 Therefore:

— All other group members must also broadcast a
646 MB message

— Messages should look like random strings

]

Issue 1: Traffic Analysis

\ N

ZXmnco
ak929j9
aksjdq9
wldkOw

alkj38f8
2hlkd02
9sjlkjd0
981lkjlkj

vmdnv
mdnduu
z093ufoi
Ikjksdlka

0988jafk
skjdcka8
3masijkjs
dikqwkd

Alice

Bob

Chris

Eve

Issue 2: Recovery

e How can members recover Chris’ video from
the 646 MB random-looking strings?

* Assume Alice, Bob, and Eve send pseudo-
random strings known to Chris

* Then:
— Chris sends the XOR of his video with Alice, Bob,
and Eve’s pseudo-random strings

— i.e., three serial one-time pad encryptions
 Reminiscent of Chaum’s DC net

The

646MB

Video

o) e

ZXmnco
ak929j9
aksjdq9
wldkOw

alkj38f8
2hlkd02
9sjlkjd0
981I1kjlkj

Alice

Bob

Issue 2: Recovery

\&

vmdnv
mdnduu
z093ufoi
Ikjksdlka

0988jafk
skjdcka8
3masijkjs
dikqwkd

Chris

Eve

Issue 3: Assighment

* How can Chris efficiently assign 646 MB strings
to Alice, Bob, and Eve?

* Chris anonymously broadcasts (somehow) a
table of assignments along with the length of
his message

e Each assignment contains:

— A PRF seed encrypted for each member

— A cleartext hash of the string assigned to each
member

Issue 3: Assignment

Length: 0 bytes Length: 0 bytes Length: 646 MB Length: 0 bytes
Seed | Hash Seed | Hash Seed | Hash Seed | Hash

A | {dfwvl, | tds2 A | {voekl, 2d2t A | {dkad}, | 092f A | {dsfrl, difs
B | fert3) 3flk B | {2fvaly nveO B | {f23d} f9ja B | {fv2a) hvae
c | {oofgl df3f c | {affl 3ren c | {d3gs} | jh2m c | {sdfb} 0jd2
E | {feah) vce3 E | {d2e5) sdvz E| (afefk vnsk E | {s5egl | fewh

Alice Bob Chris Eve

Length: 646 MB

Enc. Seed Hash

Al {dkad}, | 092f

B| {f23d}, | f9ja

C| {d3g5}. jh2m

E| {afef} vnsk

C {d3g5} jh2m

E {afef}, vnsk

Chris

Alice

Length: 0 bytes
Enc. Seed | Hash
<‘ {dfwv}, td82
{ert3}; 3flk
{09fg} df3f
e {fg4h}; vce3
(] A —
(E,/b‘ﬁ}g vce3

Length: O bytes

Enc. Seed Hash

Al {v9ek}, | 2d2t

B| {2fva}; nveO

C| {afbf}. 3ren

E| {d2g5}; sdvz

' =

C {afbf}. 3ren

E {d2g5}; sdvz

Bob

Length: O bytes

Enc. Seed Hash

A| {dsfr}, d1fs

B| {fv24}; hvae

C| {sdfb}. | 0jd2

Length: 0 bytes

E| {sSeg}. fewh Sced | ook

A {dsfr}, difs

; B {fv24}, hvae

= ! w oo =

@b}c 0jd2

E {sSe? wh

Eve

Issue 3: Assignment

Length: 0 bytes Length: 0 bytes Length: 646 MB Length: 0 bytes
Seed | Hash Seed | Hash Seed | Hash Seed | Hash

A | {dfwvl, | tds2 A | {voekl, 2d2t A | {dkad}, | 092f A | {dsfrl, difs
B | fert3) 3flk B | {2fvaly nveO B | {f23d} f9ja B | {fv2a) hvae
c | {oofgl df3f c | {affl 3ren c | {d3gs} | jh2m c | {sdfb} 0jd2
E | {feah) vce3 E | {d2e5) sdvz E| (afefk vnsk E | {s5egl | fewh

Alice Bob Chris Eve

Issue 3: Assignment

Length: 0 bytes Length: 0 bytes Length: 646 MB Length: 0 bytes
Seed | Hash Seed | Hash Seed | Hash Seed | Hash

A | {dfwvl, | tds2 A | {voekl, 2d2t A | {dkad}, 092f A | {dsfrl, difs
B | fert3) 3flk B | {2fvaly nveO B | {f23d} f9ja B | {fv2a) hvae
c | {oofgl df3f c | {affl 3ren c | {d3gs} | jh2m c | {sdfb} 0jd2
E | {feah) vce3 E | {d2e5) sdvz E| (afefk vnsk E | {s5egl | fewh

Alice Bob Chris Eve

Issue 4: Anonymity

How can Chris transmit his assignment table
anonymously?

The assighment contains the length of Chris
message, so it must not be traceable to him

Dissent uses a modification of the Brickell-
Shamikov data collection protocol to shuffle the

fixed-length assignment tables

Final ordering of tables determines ordering in
which members broadcast their pseudo-random
strings

’

Issue 4: Anonymity

Fixed-length
Shuffle

Length: 0 bytes Length: 0 bytes Length: 646 MB Length: 0 bytes

Seed | Hash Seed | Hash Seed | Hash Seed | Hash

A | {dfwvl, | tds2 A | {voek}, 2d2t A | {dkad}, 092f A | {dsfrl, difs

B | {ert3} 3flk B | {2fval nve0 B | {f23d} f9ja B | {fv2a) hvae

c | {09fgl df3f c | {affl 3ren c | {d3g5) | jh2m c | {sdfb} 0jd2

E | {fesh vce3 E | {d2e5) sdvz E | fafefl vnsk E | {s5egl | fewh
Alice Bob Chris Eve

Putting it together...

1. Each group member generates a fixed-length
assighment table

2. Members use fixed-length shuffle to
anonymize these assignment tables

3. Members (except sender) use assigned PRF
seeds to generate a psuedo-random string
for each anonymous message

4. Strings corresponding to each message XOR
to the sender’s message

Variable-length is better

Fixed-length Variable-length

A Padding A

Assignment

B Padding B Tables
C R vesose
E Padding E | * I

NL_ ., bits L, + kKN bits

33

Outline

Introduction to Dissent

How Dissent works
— Overall protocol: Variable-length shuffle

— Key component: Fixed-length shuffle
Prototype and experimental results

Goals for future work

Fixed-Length Shuffle

e A verifiable secret shuffle

* Adds accountability to Brickell-Shmatikov
shuffle

* Two possible outcomes:

1. Shuffle succeeds, messages delivered, secret
permutation unrecoverable

2. Shuffle fails, messages unrecoverable, at least
one attacker exposed

Issue 1: Anonymity

* How do members anonymize their messages?

* We use onion routing / mix network to
provide anonymity:
1. Members serially encrypt their message with the

public key of each group member in a pre-
determined order

2. Each group member sequentially decrypts,
permutes, and forwards the message set

Message set under
onhion encryption

WA el
WBJetclpia
W Clelclala
UWIE ectpia

Message set under
onhion encryption

UUAL
WiB}}
W{CHl}
UUE}

WA el
WBJetclpia
W Clelclala
UWIE ectpia

Message set under Permuted plaintext

onion encryption message set
{{{A}}}} B
{{{B}}}} A
{{{C}}}} E
{{E}}} C
{{E}}} {C}}
{{B}}} {{A}}

AL UE}}

{{C}}} Cecryot {{B}}
Permute

Alice Bob Chris Eve

Issue 2: Integrity

* How do members ensure that their message is
in the output message set?

* Group members submit a “Go” or “No-go”
message after seeing the permuted message
set to confirm that their message is in the set

e Members use a second layer of onion
encryption so that Go/No-Go messages don’t
break anonymity

— One-time-use secondary keypair

Message set under
primary and secondary
onion encryption

{{{{ a = [[[[A]E]C]B]A }E}C}B}A
U B =[I[Blelclgla feichata
ity =llIClelclgla Feretaia
Hle= [[[[E]E]C]B]A }E}C}B}A

Message set under
primary and secondary
onion encryption

WO elclala
WIBJeiclpla
WY etctia
WEetclpia

Message set under
primary and secondary
onion encryption

e (ot 1)
Qrescspin
o ™S (Bl e

WY etctia
WEetclpia

Message set under
primary and secondary

onion encryption

uaji
B
v
el
e}

B}
i}

Alice

(v oo B
Permute

Permuted ciphertext
set under secondary
onion encryption

B

a
5
Y

uvH
o}
UEH

Chris Eve

Message set under Permuted ciphertext

primary and secondary set under secondary
onhion encryption onion encryption
{{ahi} i
(B T[IAIL:
{iivhh [IEIN]
{{{e}}}}
{{{e}}} {{iv}}
{{B}}} {{a}}

i} UE}}

(v oo B
Permute

Alice Bob

Issue 2: Integrity

Permuted
ciphertext set

ORZRORS

Alice Bob Chris Eve

[LLLETTTT | [LLLATIIT | CLLCETIID | CLLLCTIT]

Issue 2: Integrity

 |f all group members report Go, then each
member publishes her secondary private key

* All members can decrypt each ciphertext in
the set, and the permutation is kept secret

Issue 3: Accountability

* How do group members expose an attacker?

* |f any group member reports No-Go, then
each member:

1. Destroys her secondary private key, rendering
the messages unrecoverable, and

2. Publishes a proof of her correctness: signed
intra-group transmissions and information
necessary to replay anonymization process

Issue 3: Accountability

* Once group members destroy secondary
private keys, they can safely reveal the secret
permutation

Alice’s signed Bob’s signed
outgoing outgoing

message set message set
Bob

+ proof that Bob correctly decrypted
and permuted Alice’s message set

Fixed-Length Shuffle Recap

. Group members encrypt their message with
two layers of onion encryption

. Each group member permutes the set and
decrypts a layer of primary key encryption

. Members send a Go or No-Go message
indicating whether or not to decrypt

. Members publish either their secondary
private keys OR proofs of their correctness

Outline

Introduction to Dissent

How Dissent works
— Overall protocol: Variable-length shuffle

— Key component: Fixed-length shuffle
Prototype and experimental results

Goals for future work

Prototype

* Implemented fixed-length and full Dissent
(variable-length) protocols in Python

 Used Emulab, a network testbed, to run
performance tests
— 100ms node-to-node latency, 5Mbps link bandwidth
— Up to 44 nodes

* Did not implement “blame” phases

Time (minutes) — log scale

o1
o

o1

o
&)

Time required for transmission
in a 16-node group — Balanced

Variable-Length
(Dissent)

N\

™ Fixed-Length
Only

4KB 64KB 1MB 16MB
Total size of message set — log scale

Time (minutes) — log scale

50

o1

o
&)

Time required for transmission
in a 16-node group — One Sender

Fixed-Length
Only

\

“—]
Variable-Length

(Dissent)

4KB 64KB 1MB 16MB
Total size of message set — log scale

Prototype

* Broadcasting a 16 MB file in a 16-node group
took 3.6 times longer using Dissent than
broadcasting file without encryption or
anonymization

* Refer to paper for full results
— Round time over message set size

— Round time broken down by component
— Round time over group size

Outline

Introduction to Dissent
How Dissent works

— Overall protocol: Variable-length shuffle

— Key component: Fixed-length shuffle
Prototype and experimental results
Goals for future work

Future Work

Use a more efficient fixed-length shuffle

— Brickell-Shmatikov shuffle requires serial
interactivity

Reduce size complexity of assignment tables

Reuse one fixed-length shuffle for many
message transfers

Implement protocol on large scale

Wrap-Up

* Dissent is a sender-anonymous protocol for
oroadcast within a group

e Dissent contributes:

— Accountability, the ability to identify group members
who try to block message transmission

— Communication efficiency, under variable message
lengths

* Dissent has the potential to be a practical tool for
anonymous latency-tolerant group messaging

Acknowledgements

* The anonymous CCS reviewers

* Vitaly Shmatikov, Michael Fischer, Bimal
Viswanath, Animesh Nandi, Justin Brickell,
Jacob Strauss, Chris Lesniewski-Laas, Pedro
Fonseca, Philip Levis

* All of you for listening

Questions?

Time required to send varying

message sizes in a 16-node group

25

20

15

10

Time (minutes)

1KB 16KB 64KB 256KB 1MB 16MB

Total size of message set — Iog scale

Message
Tra nsfer

Fixed-

+« Length
Shuffle

Time required to send 1MB of data
(balanced) using Dissent

20

“n 15 Pu. TQtaI
9 Time
2

é " g Shuffle
) Time
£

|_

4 8 12 16 20 24 28 30 32 36 40 44

Number of Nodes

Definitions

* Integrity: All honest group members have the
messages of all other honest diners, or know that

the shuffle failed

* Anonymity: No subset of members of size < N -2
can match another member to her message with
probability better than random guessing

* Accountability: No honest group member has a
proof that an honest member is faulty, and either
(a) all honest members obtain the message of all
other honest members, or (b) all honest
members expose at least one faulty member

Protocol Components

Generate
> Assignment Tables ~__ Fixed-Length Shuffle
Assigns pseudo-rand Based on Brick-Shmat

strings to group members 1. Shuffles assignment

tables
2. Shuffles accusations

Transmission of
Pseudo-Rand Strings

th—
Transmits pseudo-random

strings and anonymized
messages

