

Deterministically Deterring
Timing Attacks in Deterland

Weiyi Wu,
Ennan Zhai, Daniel Jackowitz,
David Isaac Wolinsky, Liang Gu

Yale University

Bryan Ford
EPFL

TRIOS – October 4, 2015

Timing Attacks via
Shared Hardware Resources

cloudcomputingnode

victimVM secret

cache

evilVMsecret

Talk Outline

● Background: Attacks and Mitigation in the Cloud
● Design: Hypervisor-Secure Mitigation
● Implementation: Deterland Hypervisor
● Preliminary Results: It Works (at a Cost)
● Conclusion

Timing Attack Background

● Internal or Local Attacks:
– Attacker controls VM co-resident with victim
– Operates from within the cloud environment

– Ristenpart et al, “Get Off My Cloud” 2009

● External or Remote Attacks:
– Attacker has limited/no control over guest VM

– Operates from outside the cloud environment

– Brumley/Boneh, “Remote timing attacks” 2005

Internal Attacks: Simplified Example

Attacker VM Victim VM

Shared Resource, e.g., cache

Victim
Code
S = Secret
(1 bit)If (S) {

 code touching
 target cacheline
}

Attacker
Code

1. Run code in
target cacheline

2. Wait

3. Run again,
measure time

Report:
S=0 if quick
S=1 if slow

External Attacks: Simplified Example

Victim VM

Shared
Resource,

e.g.,
Network

Victim
Server
S = Secret
(1 bit)

Service request:
If (S) {
 compute something
 that takes time
}

Measure
Delay
S=0 if quick
S=1 if slow

Attack
Client
send request

Demonstrated Attacks

● Internal/Local attacks naturally easier
– Through many resources:

L1 code cache, L1 data cache, function units,
branch target cache, last-level cache, …

– Including cross-VM attacks in cloud environments
[Zhang'12, Yarom'13, Irazoqui'14, …]

● But External/Remote attacks demonstrated too
– e.g, remotely steal private RSA keys from

non-constant-time SSL/TLS libraries
[Bonneau'06, Brumley'10, Chen'10, …]

Why Pick On Cloud Computing?

Cloud computing exacerbates vulnerabilities:

1.Mutually distrustful tasks routinely co-resident

2.Clouds introduce massive parallelism

3.Cloud-based timing attacks won't get caught

4.Partitioning defeats elasticity of the cloud

Aviram et al., “Determinating Timing Channels in
Compute Clouds” [CCSW '10]

Timing Channel Mitigation

Timing channels require: [Wray 91]
● A resource that the victim process

may (inadvertently) modulate
● A reference clock enabling the attacker

to observe, extract the modulated signal

Remove either → no timing channel.

Approach 1: Eliminate Modulation

(a) by statically partitioning hardware resources
– Generalizes over code, must modify hardware

– Incompatible with cloud business model

Split Resource, e.g., cache

Victim VMAttacker VM
if(S)

Victim VM

Approach 1: Eliminate Modulation

(b) via constant-time code execution
– General hardware, but specialized code

– Difficult to write, broken by “smart” compilers

if(S)

Attacker VM

Approach 2: Deny Reference Clocks

If attack VM can't tell time, can't measure time
● At least not locally, internal to cloud

Shared Resource, e.g., cache

Victim VMAttacker VM
if(S)

Approach 2: Deny Reference Clocks

Attacker can still measure time remotely
● But we mitigate to rate-limit external leakage

Shared Resource, e.g., cache

Victim VMAttacker VM
if(S)Mitigated

I/O:
Network,
Disk, …

Request

Response

Deterministic Mitigation

● Variants proposed independently by:
– [Aviram'10] – Determinator basis, cloud focus

– [Askarov'10] – PL basis, formal analysis
– [Stefan'12] – PL basis, Haskell/Monads prototype

● No prior prototype of general mitigation
compatible with existing apps & Oses

Talk Outline

● Background: Attacks and Mitigation in the Cloud
● Design: Hypervisor-Secure Mitigation

– Timing-Channel Mitigation Overview

– System-enforced Determinism in Deterland
– Practical hypervisor-enforced mitigation

● Implementation: Deterland Hypervisor
● Preliminary Results: It Works (at a Cost)
● Conclusion

Overly-Simplified Example

● Batch operation, known worst-case exec time
– Attacker submits input I, cloud computes pure f(I),

always returns result exactly 1 “clock-tick” later
because f limited to (say) 1M instructions

Shared Resource, e.g., cache

Victim VMAttacker VM
if(S)Mitigated

I/O:
Network,
Disk, …

Input I
at tick t

Output O
at tick t+1

Overly-Simplified Example

Intuitive reasoning (formalized by Askarov):
● Attacker can learn leaked info only via either

content of output O or timing of its production
– If O is a pure function of its explicit input, O = f(I),

then O cannot depend on nondeterministic timing
● Principle: determinism closes internal timing channels

– If O is always produced after the same delay,
then timing of O cannot reveal any information

● Principle: constant delay closes external channels

Adversarial
Programs

Non-malicious
Programs

What Type of Determinism?

● Weak Determinism:
typically library-implemented,
works on race-free code
[Grace, Kendo, …]

● Strong Determinism:
typically library-implemented,
works on non-malicious code
[CoreDet, Dthreads, …]

● Secure Determinism:
system-enforced,
works on adversarial code
[Determinator, Deterland]

Race-Free
Programs

Adversarial
Programs

Non-malicious
Programs

What Type of Determinism?

● Weak Determinism:
typically library-implemented,
works on race-free code
[Grace, Kendo, …]

● Strong Determinism:
typically library-implemented,
works on non-malicious code
[CoreDet, Dthreads, …]

● Secure Determinism:
system-enforced,
works on adversarial code
[Determinator, Deterland]

Race-Free
Programs

Insufficient
for

Timing
Channel

Mitigation

Mitigation requires Secure,
System-Enforced Determinism

● If attacker-controlled VM can escape
determinism enforcement, attacker can tell time
→ high-rate internal timing channel leak

● Most any source of nondeterminism is usable,
e.g., launch thread that increments-and-spins

● Deterland must
– Prevent unsynchronized

cross-thread interaction

– Prevent malicious escape
from deterministic sandbox

int bogoTime = 0

thread QuasiTimer {
 while (true) {
 bogotime++
 }
}

Deterland Hypervisor

● Based on CertiKOS,
based on Determinator

● Designed to be simple,
formally verifiable hypervisor
– CertiKOS is largely verified,

but Deterland isn't (yet)

Determinator Kernel

Device I/O

Registers
Working Memory

Child Space Child Space

Grandchild Space Grandchild Space

Synchronization

Synchronization

Root Space
Snapshot

Kn#spec

L0#primitives

K1 Asm#code## K2##…##Kn

L1#primitives

Kn#Asm#code## #P

Ln#primitives

Other#Asm#code#PK1#,#K2#,##…#,##Kn#

#P

Kn code## #CompCertX

K1#spec

K1 code##

Asm L0#abs>state

Asm L1#abs>state

Asm Ln#abs>state

#CompCertX

VM
VM

VM Internet

artifcialtime
mitigationboundary

walltime

VM

hypervisor

vTimer monitor

simulated
devices

virtio
devices

mitigator

backend

drivers

physical
I/Odevices

Deterland Hypervisor Architecture

VM
VM

VM Internet

artifcialtime
mitigationboundary

walltime

VM

hypervisor

vTimer monitor

simulated
devices

virtio
devices

mitigator

backend

drivers

physical
I/Odevices

Deterland Cloud Architecture

● Cloud provider offers different classes of VMs
with different timing mitigation parameters
– Only VMs with same mitigation parameters

directly share physical machines

dataprotection
deterministicexecution

lowleakagerate

VM
VM

dataprotection
deterministicexecution
mediumleakagerate

VM
VM

VM dataprotection
nondeterministicexecution
unconstrainedleakagerateVM

Mitigation for Interactive I/O

Intuition: “interactive operation” is just a
series of small batch operations
● Cloud customer (e.g., attacker) can submit

one new “batch input” per mitigation clock tick
– Safe to maintain guest VM state across ticks

– Safe to combine several inputs into one clock tick

I/O

Inputs I1 at t

Outputs O1 at t+1

Inputs I2 at t+1

Outputs O2 at t+2

O1,S1 = f(I1,S0)

S0

S1

O2,S2 = f(I2,S1)

S2

Relax Worst-Case Execution Time

● Don't require every input to be done in 1 tick
– “Easy-to-execute” ticks waste CPU capacity

● Instead, output delay is integral number of ticks
– Extra ticks are “bubbles”, which can leak info
– But can leak at most one bit per tick

I1
O1

I2

O2

time
t0

t1

Work

Idle

Work

Idle t2

I1
O1
I2

O2

time
t0
t1
t2
t3

Work

Work

Idle

t4

Talk Outline

● Background: Attacks and Mitigation in the Cloud
● Design: Hypervisor-Secure Mitigation
● Implementation: Deterland Hypervisor
● Preliminary Results: It Works (at a Cost)
● Conclusion

Implementation Summary

● Works, runs unmodified Linux (Ubuntu) guests
– Deterministically emulates PIT, RDTSC timing

– Virtio-based disk, network devices supported

● Limitation (inherited from CertiKOS):
currently only one guest VM per physical core
– Not fundamental, just per-core scheduler missing

● Limitation: one virtual core per guest VM
– Much harder to solve efficiently, deterministically

● Workaround: “scale-out” across many
single-core guests on each multi-core machine

Counting Instructions

● Challenge: x86 hardware can't trigger precise
exception or VMexit after given # of instructions
– Solution: imprecise performance counters plus

single-stepping from “undershoot” to exact point

– Classic technique used in ReVirt, etc.

● Works, but slow: major CPU cost per trigger
– Amortizable if Deterland clock ticks are long,

but long clock ticks are bad for I/O latencies
– Historical architectures (e.g., PA-RISC) had precise

instruction-counting; maybe future CPUs could too?

Talk Outline

● Background: Attacks and Mitigation in the Cloud
● Design: Hypervisor-Secure Mitigation
● Implementation: Deterland Hypervisor
● Preliminary Results: It Works (at a Cost)
● Conclusion

CPU-intensive Microbenchmark

Load overhead if we
keep the CPU busy

Otherwise we pay
the “real-time tax”
of underutilization

Performance vs Leakage Bound

Real Compute-intensive Workloads

Upshot: not too bad, if we keep the CPU busy

Filesystem Benchmark

● Mitigation hurts I/O-intensive work (of course)
– Heavily dependent on mitigation interval

– Possible solution: deterministic disk/FS access

Network-intensive Benchmark

● Main problem: mitigation of guest TCP stack
– Congestion control highly sensitive to timing

– Possible solution: move TCP stack out to hypervisor

Potential Future Optimizations

● Mitigating all I/O is unnecessary in principle:
– Deterministic intra-cloud, inter-guest networking

– Deterministic intra-cloud disk access

● Mitigate at higher levels of abstraction:
– Move TCP, congestion control out of guest VM

– Move filesystem, disk drivers out of guest VM

● Determinate but don't mitigate:
– Enforced determinism alone eliminates local attacks

– Mitigation needed only to rate-limit remote attacks
● Can disable if remote attack risk is deemed remote

Compiler/Hardware Opportunities

● Deterministic instruction counting is costly
– Potential alternative: lightweight code rewriting?

– Long-term: why oh why doesn't hardware do this?

● Instruction count is also a poor model for
“deterministic time”
– Falsely pretends all instructions about equally hard

– Potential alternative: deterministic cost models?

– Long-term: hardware support for cost models?

Conclusion

● First hypervisor implementing timing channel
mitigation for existing unmodified OSes, apps
– General I/O mitigation model for virtio devices

– Usable performance for CPU-intensive loads,
currently high costs for I/O-intensive loads

● Just first step, many improvements possible

More info: http://dedis.cs.yale.edu/cloud/

Code: git@dedis.cs.yale.edu:verikos tifc rtl

http://dedis.cs.yale.edu/cloud/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

