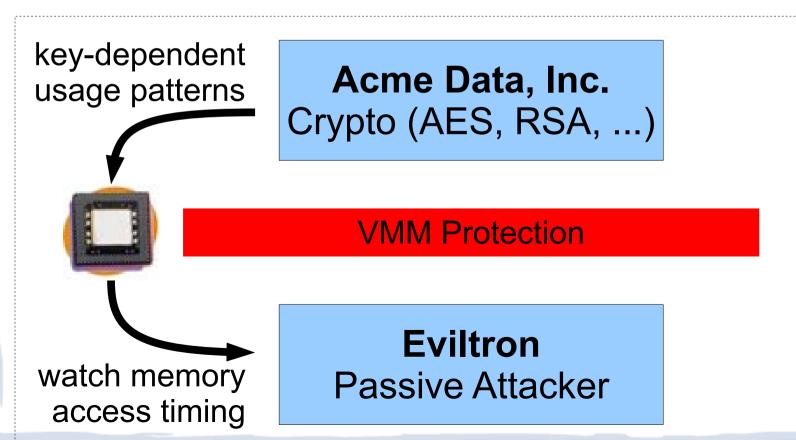
Icebergs in the Clouds: the Other Risks of Cloud Computing

Bryan Ford

Yale University
http://dedis.cs.yale.edu/


USENIX HotCloud, June 12, 2012

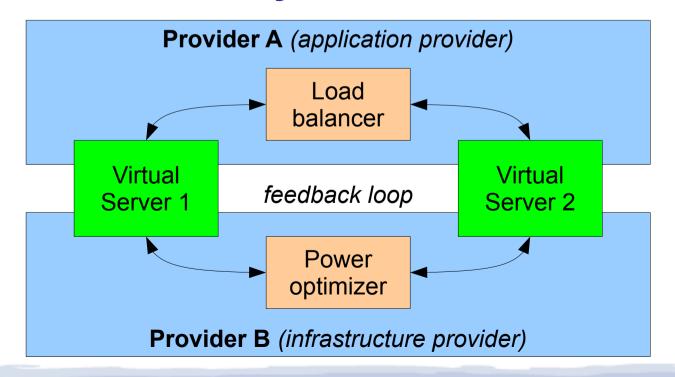
Well-Known, "Immediate" Risks

- Traditional Information Security
 - Security of data
 - Integrity of data, computation
 - Personal privacy
 - Malware defense
 - Availability, reliability
 - ...
- Important, plenty more to be done, but not what this talk is about

Several potential risks...

1. Side-Channels

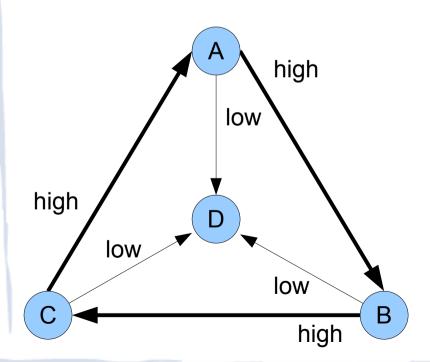
Cloud Host


Timing Channels

The cloud exacerbates timing channel risks:

- 1. Routine co-residency
- 2. Massive parallelism
- 3.No intrusion alarms → hard to monitor/detect
- 4. Partitioning defenses defeat elasticity

"Determinating Timing Channels in Compute Clouds" [CCSW '10]


- 1. Side-Channels
- 2. Reactive Stability

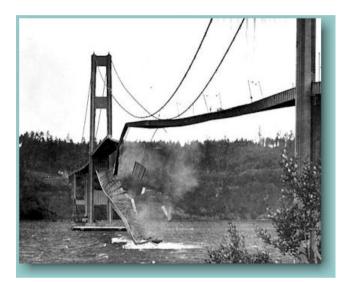
Seen this before?

BGP "dispute wheel"

uncoordinated policies can loop

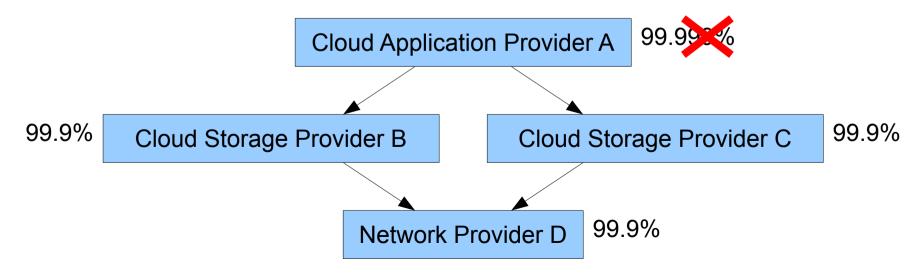
In the Cloud:

- providers want max usage, profit
 - → oversubscribe
- handle overloads
 - → swap with peers?


Cloud dispute wheels?

Credit default swaps?

Speculation, bubbles?


Weather Forecast

- Cloudy with a chance of
 - Wild instabilities
 - Occasional collapses
- Accidents already happen

- Mogul, "Emergent (mis)behavior..." [EuroSys'06]
- But cloud computing makes this risk systemic
 - Control theory might help given information
 - But incentives to keep algorithms secret
 → no one can analyze across providers!

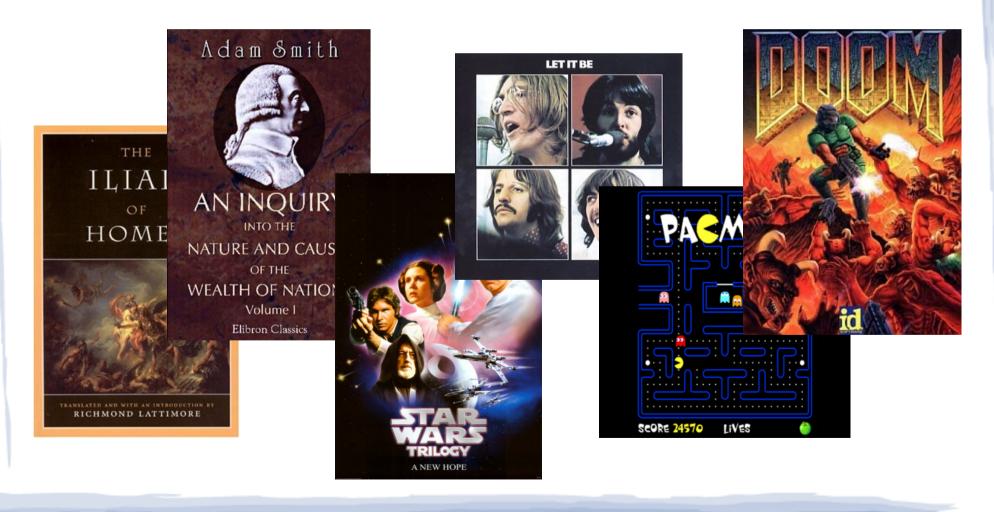
- 1. Side-Channels
- 2. Reactive Stability
- 3. Cross-Layer Robustness

Correlated Failures Already Happen

- Baltimore Howard Street Tunnel Fire of 2001
 - Cut a bundle of fibre optic cables serving several major ISPs simultaneously
 - Risk wasn't apparent until train blew up

- 1. Side-Channels
- 2. Reactive Stability
- 3. Cross-Layer Robustness
- 4. The Always-Connected Assumption

Ender's Game: the "Hive Mind"


A Disaster-Readiness Disaster

- The cloud model assumes "always-connected"
 - But in any disaster, connectedness is first to go
- Can't lookup "CPR instructions" on Wikipedia
- Can't find road out of town with Maps app
- Siri may be optional now, but for how long?
 - Can't launch "flashlight app" or "compass app"
- What happens to search/rescue drones without their ground-based logic, operators?

- 1. Side-Channels
- 2. Reactive Stability
- 3. Cross-Layer Robustness
- 4. The Always-Connected Assumption
- 5. Are We the Bad Guys?

In 1000 years...

Someone will still have a copy of:

In 1000 years...

Will anyone still have a usable "copy" of:

Non-Preservability of the Cloud

Conventional artifacts have a decentralized preservability property

- Book/music/video producers must make "complete copies" available to customers
- Customers can work together to preserve

Cloud-based artifacts *destroy* this property

 No one but the app/service provider ever has code & data necessary to preserve history

A Darker Digital Dark Age?

Many culturally important artifacts are and will increasingly be cloud-based apps & services

- But only the provider can preserve them, and usually have few/no incentives to
- Does the Library of Congress, or anyone, have Google 1.0? Facebook 1.0? WoW 1.0?
- What about the blogs, tweets, or email records of the next Homer/Newton/Marx/Einstein?

Will cloud artifacts be the next "hole" in history?

At least five potential risks...

- 1. Side-Channels
- 2. Reactive Stability
- 3. Cross-Layer Robustness
- 4. The Always-Connected Assumption
- Non-Preservability of the Cloud
- ...and no doubt not the end of the list!

Conclusion

What are the risks beyond information security? What could happen if we don't address them? What research should we do to address them?

Bryan Ford – Yale DeDiS group http://dedis.cs.yale.edu