

Structural Cloud Audits that
Protect Private Information

Hongda Xiao, Bryan Ford, Joan Feigenbaum
Department of Computer Science

Yale University

Cloud Computing Security Workshop – November 8, 2013

Motivation

● Cloud computing and cloud storage now plays a central role in
the daily lives of individuals and businesses.

● Over a billion people use Gmail and Facebook to create, share,
and store personal data

● 20% of all organizations use the commercially available cloud-
storage services provided both by established vendors and by
cloud-storage start-ups

● Reliability of cloud-service providers grows in importance.

Motivation
● Cloud-service providers use

redundancy to achieve
reliability

● But redundancy can fail due
to Common Dependencies

Data Center 1 Data Center 2

Power Station 1
[Ford, Icebergs in the Clouds, HotCloud '12]

Motivation
● This is a real problem

● e.g. a lightning storm in northern Virginia took out both the main
power supply and the backup generator that powered all of
Amazon EC2's data centers in the region

● We need a systematic way to discover and quantify
vulnerabilities resulting from common dependencies

Motivation
● Zhai et al. proposed Structural Reliability Auditing (SRA)

● collect comprehensive information from infrastructure providers
● construct a service-wide fault tree
● identify critical components, estimiate likelihood of service outage

● A potential barrier to adoption of SRA is the sensitive nature of
both its input and its output.

● cloud service providers and infrastructure providers may not be
willing to disclose the required information

Objective

● Privacy-Preserving SRA (P-SRA): investigate the use of secure
multi-party computation (SMPC) to perform SRA in a privacy
preserving manner

● Perform SMPC on complex, linked data structures of cloud
topology, which has not often been explored yet

Basic Idea

Cloud Service1

Power 1

Router 1 Router 2

(Router1 Router2)

(Power1, Router1
Router2)

Cloud Service1

Data
Center 1

Data
Center 2

Power 1 Power 2Router 1 Router 2

Step 1: Build a structural model of
cloud infrastructure of interest

Step 2: Perform fault tree analysis
to detect hidden failure risks

[Zhai et al., Auditing the Structural Reliability of the Clouds, Yale TR-1479]

Challenges
● Private Data Acquisition

● How to collect complex, linked data of cloud topology without
compromising the privacy of the cloud and infrastructure
providers?

● Privacy-Preserving Analysis
● How to identify common dependencies and correlated failure risk

without requiring providers to disclose confidential information?

● Efficiency
● SMPC is NOT very efficient especially when the size of inputs are

large

Our Solutions

● Private Data Acquisition
● Leverage secret sharing techniques in SMPC
● Specify valid output protecting privacy

● Privacy-Preserving Analysis
● Specialized graph representation techniques to build fault tree in a

privacy preserving manner

● Efficiency
● Novel data partitioning techniques to effectively reduce the input

size of SMPC and leave most of the computations locally

System Design Overview

● P-SRA Client
● Data Acquisition Unit (DAU)
● Local Execution Unit (LEU)
● Secret Sharing Unit (SSU)

● P-SRA Host
● Represents Cloud Users,

Reliability Auditors
● Does SMPC coordination

Cloud 1
DAU

LEU
SSU

Cloud 2

Cloud 3

SMPC

Coordination

DAU

LEU
SSU

DAU

LEU
SSU

P-SRA Client

P-SRA Host

Cloud Users

SMPC
Computation

Cloud Provider

● Install and control a P-SRA Client
● Input their private infrastructure information, which is

considered private
● Semi-honest Threat Model

● The Cloud Providers are honest but curious

P-SRA Client

● Fully controlled by Cloud Providers
● Data Acquisition Unit

● Collects component and dependency information

● Local Execution Unit
● Perform local stractural reliability analysis

● Secret Sharing Unit
● Perform SMPC with P-SRA Host

P-SRA Host

● SMPC module
● Perform SMPC with each P-SRA client installed by cloud

providers

● Coordination module
● Coordinate the communication between P-SRA Clients and P-

SRA Host

● Semi-honest Model
● The P-SRA Host is honest but curious

Outline of How the System Works

● Step 1: Privacy-preserving dependency acquisition
● Step 2: Subgraph abstraction to reduce problem size
● Step 3: SMPC protocol execution and local computation
● Step 4: Privacy-preserving output delivery

Privacy-preserving dependency acquisition

● The DAU of each cloud-service provider collects information
about the components and dependencies of this provider

● network dependencies
● hardware dependencies
● software dependencies
● failure probability estimates for components

● Store the information in a local database for use by P-SRA's
other modules.

Subgraph Abstraction

● The Client's SSU abstracts the dependency information of
private components as a set of macro-components, which are
the actual inputs of the SMPC

● Key step to reduce the input size of SMPC
● The choice of abstraction policy is flexible as long as satisfying

the proper criterions
● Can be generalized to other SMPC problem on complex and

linked data structure

Subgraph Abstraction Policy

● A subgraph H of the full dependency graph G of a cloud-
service provider S should have two properties in order to be
eligible for abstraction as a macro-component

● all components in H must be used only by S
● for any two components v and w in H, the dependency information

of v with respect to components outside of H is identical to that
of w

● SSU collapses H to a single node to transfer G to a smaller
graph G'

Subgraph Abstraction: Example

● Dependency Graph of a Simple Data Center

● A Storage Service

● Two Data Centers, one for service
and the other for back-up

● Red Frame is the data center 1, which
satisfies the two properties

Power 1 Power 2
Router 1 Router 2

Gateway1

Core1 Core3

Agg1 Agg3Agg2 Agg4

ToR1 ToR1ToR1ToR1

S1 S2 S3 S4 S5 S6 S7 S8

Back-upStorage Back-up

Core2 Core4

Gateway2

Subgraph Abstraction: Example

Power 1 Power 2
Router 1 Router 2

Gateway1

Core1 Core3

Agg1 Agg3Agg2 Agg4

ToR1 ToR1ToR1ToR1

S1 S2 S3 S4 S5 S6 S7 S8

Back-upStorage Back-up

Core2 Core4

Gateway2 Cloud Service1

Data
Center 1

Data
Center 2

Power 1 Power 2Router 1 Router 2

Red frame on the left is data center 1,
which is abstracted as Data Center 1 on

the right

SMPC and Local Computation

● SMPC
● Perform SMPC to identify

common dependency and
reliability analysis across
cloud providers

● SSUs of P-SRA Clients
work with SMPC of P-
SRA Host

● Local Computation
● SSU passes the

dependency informaiton
within macro-components
to LEU

● LEU performs structural
reliability analysis locally

SMPC Protocol

● Fault-tree construction
● Generate input for the SMPC
● Identify common dependencies
● Calculate failure sets

Fault Tree Analysis

● FTA is a deductive reasoning technique
● Occurence of top event is a boolean combination of occurence of

lower level events

● Fault Tree is a Directed Acyclic Graph (DAG)
● Node: gate or event
● Link: dependency information

● Failure Set is a set of components whose simultaneous failure
results in cloud service outage

SMPC Fault Tree Construction

● Challenge
● SMPC cannot readily handle conditionals, which are necessary in

traditional ways of processing Fault Trees

● Solution
● Rewrite the fault tree as topology paths form with types
● Eliminates use of conditionals

Topology Paths with Types

● Extract all paths through dependency DAG
● root node → intermediate nodes → leaf node
● Unpacks the DAG for "circuit" processing
● Can be exponentially larger than DAG in worst case :(

● Types of topology paths
● The SSU builds a disjunction of conjunctions of disjunctions data

structure by assigning each path a type

Topology Paths with Types: Example

Cloud Service1

Data
Center 1

Data
Center 2

Power 1 Power 2

Router 1 Router 2

Cloud Service1
Data

Center 1 Power 1

Cloud Service1 Data
Center 2 Power 2

Router 1Cloud Service1
Data

Center 1

Router 2
Data

Center 1

Router 1Cloud Service1 Data
Center 2

Router 2
Data

Center 1

Router 2Cloud Service1 Data
Center 1 Router 2Cloud Service1 Data
Center 2

Cloud Service1

Local Execution Protocol

● Generate fault tree for components within macro-components
● Compute the failure sets of each macro-component

Generate input for the SMPC

● SSUs pad the fault tree in order to avoid leaking structural
informatoin such as the size of the cloud infrastructure

● Add dummy nodes with zero ID into each topology path
● Add zero paths into the fault tree with randomly assigned types
● Zero ID nodes do not affect the result

Identify common dependencies

● SSUs and P-SRA Host cooperate to identify common
dependency

● doing multiple (privacy-preserving) set intersections, followed by
one (privacy-preserving) union

● Strict security requires doing it without conditional statements
● Transfer conditional statements into arithmetic computation

Identify common dependencies

Privacy Preserving Fault Tree Analysis:
Calculate failure sets

● Minimal FSes algorithm
● Find minimal FSes
● Exponential complexity

● Heuristic failure-sampling algorithm
● Faster
● Not necessarily the minimal FSes

Minimal FSes Algorithm

● The algorithm traverses the Fault Tree
● Basic events generate FSes containing only themselves, while

non-basic events produce FSes based on the FSes of their
child events and their gate types.

● For an OR gate, any FS of one of the input nodes is an FS of
the OR.

● For an AND gate, take cartesian product of the sets of FSes of
the input nodes then combine each element of the cartesian
product into a single FS by taking a union.

Minimal FSes Algorithm: Example
Cloud Service1

Power 1

Router 1 Router 2

(Router1 Router2)

(Power1, Router1 Router2)

Minimal FSes Algorithm

Failure Sampling Algorithm

● Randomly assigns fail or no fail to the basic events of the Fault
Tree

● Compute whether the top event fails
● If the top event fails, the failed basic events consist of a FS

Failure Sampling Algorithm: Example
Cloud Service1

Power 1

Router 1 Router 2

(Power1Router1)
is a failure set,
but not minimal

Privacy-preserving Output Delivery

● Output for Cloud-Service Providers
● Common dependency
● Partial failure sets

● Output for Cloud-Service Users
● Common-dependency ratio
● Overall failure probabilities of cloud services
● Top-ranked failure sets

Implementation

● Sharemind SecreC
● C-like SMPC programming language
● Specialized assembly to execute the code

Cloud Provider

DAU

LEU SSU

Coordination

P-SRA Client P-SRA Host

SMPC Module

●C++ Controller
●SecreC Script

Result

Simulation: SMPC

Simulation: Local Execution

Conclusion

● We designed P-SRA, a private, structural-reliability auditor for cloud services
based on SMPC, and prototyped it using the Sharemind SecreC platform

● We explored the use of data partitioning and subgraph abstraction SMPC on
large graphs, with promising results.

● Our preliminary experiments indicate that P-SRA could be a practical, off-line
service, at least for small-scale cloud services or for ones that permit
significant subgraph abstraction.

