Structural Cloud Audits that
Protect Private Information

Hongda Xiao, Bryan Ford, Joan Feigenbaum
Department of Computer Science
Yale University

Cloud Computing Security Workshop — November 8, 2013

Motivation

» Cloud computing and cloud storage now plays a central role in
the daily lives of individuals and businesses.

e Over a billion people use Gmail and Facebook to create, share,
and store personal data

« 20% of all organizations use the commercially available cloud-
storage services provided both by established vendors and by
cloud-storage start-ups

» Reliability of cloud-service providers grows in importance.

Motivation

» Cloud-service providers use
redundancy to achieve
reliability

Data Center 1 Data Center 2

» But redundancy can fail due
to Common Dependencies

[Ford, Icebergs in the Clouds, HotCloud '12]

.

Power Station 1

Motivation

* This is a real problem

* e.g. a lightning storm in northern Virginia took out both the main
power supply and the backup generator that powered all of
Amazon EC2's data centers in the region

* \We need a systematic way to discover and quantify
vulnerabilities resulting from common dependencies

Motivation
» Zhai et al. proposed Structural Reliability Auditing (SRA)

 collect comprehensive information from infrastructure providers
» construct a service-wide fault tree
» identify critical components, estimiate likelihood of service outage

* A potential barrier to adoption of SRA is the sensitive nature of
both its input and its output.

» cloud service providers and infrastructure providers may not be
willing to disclose the required information

Objective

* Privacy-Preserving SRA (P-SRA): investigate the use of secure
multi-party computation (SMPC) to perform SRA in a privacy
preserving manner

e Perform SMPC on complex, linked data structures of cloud
topology, which has not often been explored yet

-

Basic Idea

Step 1: Build a structural model of Step 2: Perform fault tree analysis
cloud infrastructure of interest to detect hidden failure risks
E Cloud Service1] LC'OUd Serviceﬂ

(Power1, Router1
Router2)

A

ﬁ 9 (Router1 Router2)

[Zhai et al., Auditing the Structural Reliability of the Clouds, Yale TR-1479]

N

Challenges

* Private Data Acquisition

* How to collect complex, linked data of cloud topology without
compromising the privacy of the cloud and infrastructure
providers”?

* Privacy-Preserving Analysis

 How to identify common dependencies and correlated failure risk
without requiring providers to disclose confidential information?

 Efficiency

« SMPC is NOT very efficient especially when the size of inputs are
large

Our Solutions

* Private Data Acquisition
» Leverage secret sharing techniques in SMPC
o Specify valid output protecting privacy

* Privacy-Preserving Analysis

» Specialized graph representation techniques to build fault tree in a
privacy preserving manner

» Efficiency

* Novel data partitioning techniques to effectively reduce the input
size of SMPC and leave most of the computations locally

System Design Overview

e P-SRA Client P-SRA Client
 Data Acquisition Unit (DAU) (. Cloud1 .
» Local Execution Unit (LEU) =

* Represents Cloud Users,
Reliability Auditors -

’ DoeS SMPC COOFdination @%SSU """""" P.SRA Host
Y W

LEU

» Secret Sharing Unit (SSU f\
« P-SRA Host SO \Cﬁt”ii‘i}
LEU

Cloud Provider

e |[nstall and control a P-SRA Client

 |[nput their private infrastructure information, which is
considered private

e Semi-honest Threat Model
« The Cloud Providers are honest but curious

P-SRA Client

» Fully controlled by Cloud Providers
* Data Acquisition Unit

» Collects component and dependency information
» Local Execution Unit

» Perform local stractural reliability analysis
» Secret Sharing Unit

* Perform SMPC with P-SRA Host

P-SRA Host

« SMPC module

 Perform SMPC with each P-SRA client installed by cloud
providers

 Coordination module

 Coordinate the communication between P-SRA Clients and P-
SRA Host

e Semi-honest Model
e The P-SRA Host is honest but curious

Outline of How the System Works

» Step 1: Privacy-preserving dependency acquisition

» Step 2: Subgraph abstraction to reduce problem size

« Step 3: SMPC protocol execution and local computation
» Step 4: Privacy-preserving output delivery

Privacy-preserving dependency acquisition

 The DAU of each cloud-service provider collects information
about the components and dependencies of this provider

* network dependencies

 hardware dependencies

e software dependencies

o failure probability estimates for components

» Store the information in a local database for use by P-SRA's
other modules.

Subgraph Abstraction

* The Client's SSU abstracts the dependency information of
private components as a set of macro-components, which are
the actual inputs of the SMPC

» Key step to reduce the input size of SMPC

* The choice of abstraction policy is flexible as long as satisfying
the proper criterions

* Can be generalized to other SMPC problem on complex and
linked data structure

Subgraph Abstraction Policy

* A subgraph H of the full dependency graph G of a cloud-
service provider S should have two properties in order to be
eligible for abstraction as a macro-component

 all components in H must be used only by S

» for any two components v and w in H, the dependency information
of v with respect to components outside of H is identical to that
of w

 SSU collapses H to a single node to transfer G to a smaller
graph G’

Subgraph Abstraction: Example

 Dependency Graph of a Simple Data Center

* A Storage Service

« Two Data Centers, one for service
and the other for back-up

 Red Frame is the data center 1, which
satisfies the two properties

ToR1 ToR1

L

[
[
[
[
[
Agg1 Agg2 |
[
[
[
[
[

Gateway?2 J

ToR1 ToR1

-

"

Subgraph Abstraction: Example

| Red frame on the left is data center 1,
I which is abstracted as Data Center 1 on |

L

B

) the right 1

R, |

| Gateway1 | Gateway?2 [Cloud Service1 }
| |

| |

| |

| |

1 Agg1 Agg2 || Agg3 Agg4

| |

| |

| ToR1 ToR1 | ToR1 ToR1

| |

| |

| |

| |

SMPC and Local Computation

« SMPC e Local Computation
* Perform SMPC to identify SSU passes the
common dependency and dependency informaiton
reliability analysis across within macro-components
cloud providers to LEU
 SSUs of P-SRA Clients LEU performs structural
work with SMPC of P- reliability analysis locally

SRA Host

SMPC Protocol

* Fault-tree construction

* Generate input for the SMPC

* |dentify common dependencies
« Calculate failure sets

Fault Tree Analysis

 FTA Is a deductive reasoning technique

e Occurence of top event is a boolean combination of occurence of
lower level events

» Fault Tree is a Directed Acyclic Graph (DAG)

* Node: gate or event
* Link: dependency information

e Failure Set is a set of components whose simultaneous failure
results in cloud service outage

SMPC Fault Tree Construction

» Challenge

« SMPC cannot readily handle conditionals, which are necessary in
traditional ways of processing Fault Trees

e Solution

* Rewrite the fault tree as topology paths form with types
» Eliminates use of conditionals

Topology Paths with Types

» Extract all paths through dependency DAG

* root node — intermediate nodes — leaf node
» Unpacks the DAG for "circuit" processing
» Can be exponentially larger than DAG in worst case :(

* Types of topology paths

 The SSU builds a disjunction of conjunctions of disjunctions data
structure by assigning each path a type

7

Topology Paths with Types: Example

Local Execution Protocol

» Generate fault tree for components within macro-components
 Compute the failure sets of each macro-component

Generate input for the SMPC

» SSUs pad the fault tree in order to avoid leaking structural
informatoin such as the size of the cloud infrastructure

 Add dummy nodes with zero ID into each topology path
* Add zero paths into the fault tree with randomly assigned types
» Zero ID nodes do not affect the result

ldentify common dependencies

 SSUs and P-SRA Host cooperate to identify common
dependency

» doing multiple (privacy-preserving) set intersections, followed by
one (privacy-preserving) union

» Strict security requires doing it without conditional statements

* Transfer conditional statements into arithmetic computation

ldentify common dependencies

Algorithm 1: Common-Dependency Finder

Input: Fault tree 7;,i = 1 to N, where N is the number of participating
cloud-service providers

Output: Common Dependency

foreach 7; and T;,I = J do

1
2 private mask.clear();
3 foreach node; € Ty and node; € Ty do
4 | private maskli][j] = (node; ID == node ID):
5 private CommonDep.clear():
6 foreach node; € T; and node; = T; do
7 private CommonDep[i| =
mask|i][j] % node ; 1D+ CommonDepli];
8§ | private CommonDependent.append(CommonDep):

9 return private CommonDependent;

Privacy Preserving Fault Tree Analysis:
Calculate failure sets

* Minimal FSes algorithm
* Find minimal FSes
* Exponential complexity
» Heuristic failure-sampling algorithm

» Faster
* Not necessarily the minimal FSes

Minimal FSes Algorithm

* The algorithm traverses the Fault Tree

» Basic events generate FSes containing only themselves, while
non-basic events produce FSes based on the FSes of their
child events and their gate types.

 For an OR gate, any FS of one of the input nodes is an FS of
the OR.

 For an AND gate, take cartesian product of the sets of FSes of
the input nodes then combine each element of the cartesian
product into a single FS by taking a union.

Minimal FSes Algorithm: Example

E Cloud Service1 }

A (Power1, Router1 Router2)

ﬁ ‘ (Router1 Router2)

ot

Minimal FSes Algorithm

Algorithm 2: Mimimal-FS algorithm

fi b

=] &

Input: Global Fault tree T
Output: MinimalF5S
foreach privare parfi; = T do
foreach privare node; = privare path; do
private path; FS.apped(node;);
/* each path corresponds to an OR gate with
input as the nodes along the path */

foreach AndGare; = T do
AndGate; FS.clear().
foreach parh; = AndGare; do
AndGate; F 5 <+ AndGare; F5 < path; F 5,
/* process the AndGate for each type of
topology paths *
/* F8 of AndGarte; is the Cartesian Product of
AndGate; F'S and parh; F5. *

private minimalFS.clear();
foreach AndGare; = T do
minimal FS.append(AndGare; F5);
/* process the UOR gate connecting to the And
Gates */

/* reduce redundant items in minimumfFS and assign the
result to minimalF%, and then simplify minimalFS.
#

minimal FS +— reduce_redundancy(minimal F§);

2 muimimal FS «+— simpli fyv(minimalF §');

return minimalFS;

Failure Sampling Algorithm

 Randomly assigns fail or no fail to the basic events of the Fault
Tree

 Compute whether the top event fails
* |[f the top event fails, the failed basic events consist of a FS

Failure Sampling Algorithm: Example

A
— o
P

(Power1Router1)
IS a failure set,

but not minimal

Privacy-preserving Output Delivery

e Output for Cloud-Service Providers
 Common dependency
» Partial failure sets

e QOutput for Cloud-Service Users
 Common-dependency ratio

» Overall failure probabilities of cloud services
* Top-ranked failure sets

-

Implementation

 Sharemind SecreC
* C-like SMPC programming language
» Specialized assembly to execute the code

Cloud Provider

o «C++ Controller
*SecreC Script
1
LEU SSU :
Result
1
1

P-SRA Client . P-SRA Host

|

Simulation: SMPC

Case 1 Case 2 Case 3 Case 4 Case 5
of cloud providers 2 2 3 3 2
of data center l 3 S 10 3
of internet router 3 5 10 15 5
of power stations ! 2 3 S 2
ratio of common dep. 0.8 0.2 0.2 0.2 0.2
ratio of padding 0.0 0.0 0.0 0.0 0.5

Table 1: Configuration of Test Data Sets

100
31.62
10
3.16

0.32

0.1
.03
.01

Running Time (hours)

COoOmmcn 2

3

algorithm s

rmin

—ill— case 1
—%— case 2

case 3
—— case 4
—— case 5

Simulation: Local Execution

Table 2: Performance of the LEU of a P-SRA chient

Configuration Case 1 Case 2 Case 3 Case 4 Case 5
of switch ports 4 S 16 24 45
of core routers 4 16 64 1 44 576
of agg switches S 32 128 288 1152
of ToR switches 3 32 128 288 1152
of servers 16 128 1024 3456 13824
Total # of components 40 216 1 360 4200 16752
Running time (minutes)

FS round 10° < 0.7 < 0.7 < 0.7 < 0.7 < 0.7
FS round 10% 0.7 0.7 1.7 2.3 6.9
FS round 10° 0.8 0.9 5.3 28.1 6.9
FS round 10° 1.7 4.5 65.0 243.5 462.9
FS round 107 28.3 56.6 512.1 NA NA
Minimal FS 0.8 14.8 3097 NA NA

Conclusion

* We designed P-SRA, a private, structural-reliability auditor for cloud services
based on SMPC, and prototyped it using the Sharemind SecreC platform

* \We explored the use of data partitioning and subgraph abstraction SMPC on
large graphs, with promising results.

* Our preliminary experiments indicate that P-SRA could be a practical, off-line
service, at least for small-scale cloud services or for ones that permit
significant subgraph abstraction.

