

System-Enforced Determinism:
What it Is, How Practical Is It,

and What's It Good For?

Bryan Ford
Amittai Aviram, Weiyi Wu, Yu Zhang,

Bandan Das, Shu-Chun Weng, Sen Hu

Decentralized/Distributed Systems Group,
Yale University

http://dedis.cs.yale.edu/

University of Texas at Austin – Nov 15, 2012

http://dedis.cs.yale.edu/

Pervasive Parallelism

CPU

RAM

I/O

Uniprocessor

CPU

RAM I/O

CPU

Multiprocessor

Core Core
Core Core

Core Core
Core Core

Core Core
Core Core

Core Core
Core Core

RAM RAM

RAM

I/O

RAM

I/O

Multicore

RAM RAM

RAM

I/O

RAM

I/O

“Many-core”

Industry shifting from “faster” to “wider” CPUs

Today's Grand Software Challenge

Parallelism makes everything harder.
● Nondeterministic programming models

– Synchronization, concurrency challenges

● Creates pervasive risks of data races
– Leads to “once-in-a-million runs” heisenbugs

● Undermines execution repeatability
– Needed in fault tolerance, debugging, ...

● Unintentionally leaks information
– Timing side-channels, IDS-evading malware

Does
Pervasive Parallelism

imply
Pervasive Nondeterminism?

Not necessarily...

Talk Outline

● Introduction: Parallelism and Data Races
● Determinator: a Determinism-Enforcing OS
● Is Determinism Efficient, General, Usable?
● Why System-Enforced Determinism?
● Conclusion

Races are Everywhere

x = 2x = 1

Write/Write

y = xx = 2

Read/Write

● Memory Access

● File Access

● Synchronization

● System APIs

rename()open()

lock;
 x *= 2;
unlock;

lock;
 x++;
unlock;

malloc()
→ ptr

malloc()
→ ptr

open()
→ fd

open()
→ fd

Living With Races

“Don't write buggy programs.”

Logging/replay tools (BugNet, IGOR, …)
● Reproduce bugs that manifest while logging

Race detectors (RacerX, Chess, …)
● Analyze/instrument program to help find races

Deterministic schedulers (DMP, Grace, CoreDet)
● Synthesize a repeatable execution schedule

All: help manage races but don't eliminate them

“Heisenbug papers” at SOSP/OSDI
(detecting, replaying, avoiding, recovering from...)

Must We Live With Races?

Ideal: a parallel programming model in which
races don't arise in the first place.

Already possible in particular languages
● Pure functional languages (Haskell)
● Deterministic value/message passing (SHIM)
● Separation-enforcing type systems (DPJ)

What about race-freedom for any language?

Talk Outline

✔ Introduction: Parallelism and Data Races
● Determinator: a Determinism-Enforcing OS
● Is Determinism Efficient, General, Usable?
● Why System-Enforced Determinism?
● Conclusion

Introducing Determinator

New OS offering a race-free parallel environment
● Compatible with arbitrary (existing) languages

– C, C++, Java, assembly, …

● Avoids races at multiple abstraction levels
– Shared memory, file system, synch, ...

● Takes clean-slate approach for simplicity
– Ideas could be retrofitted into existing Oses

● Current focus: compute-bound applications
– But we can support interactive apps too

Determinator's Parallel Model

Private workspace model for shared state

1.on fork, “check-out” a copy of all shared state

2.thread reads, writes private working copy only

3.on join, “check-in” and merge changes

fork, copy shared stateparent
thread/

process

parent
thread/

process
child

thread/
process

parent's
working
state

child's
working
state

join, merge shared state

Seen This Before?

Precedents for private workspace model:
● DOALL in early parallel Fortran computers

– Burroughs FMP 1980, Myrias 1988

– Language-specific, limited to DO loops

● Version control systems (cvs, svn, git, …)
– Manual check-in/check-out procedures

– For files only, not shared memory state

● Snapshot consistency in databases
– Is “weakness” a bug or a feature?

What does this mean in an OS?

Determinator applies private workspace model
pervasively to all application-visible shared state
● Threads and shared memory
● Processes and shared file systems

Extensively use synchronization, reconciliation
techniques developed for distributed systems...
● think “distributed system in a box”

t[0] t[1]

Example: Gaming/Simulation,
Conventional Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

actors
[0] [1]

main thread

read read

update update

synchronize,
next time step...

t[0] t[1]

actors
[0] [1]

main thread

Example: Gaming/Simulation,
Conventional Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

update

oops!
corruption/crash

due to race

read

(partial)
update

read

actors

[0] [1]

main thread

Example: Gaming/Simulation,
Determinator Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

t[0] t[1]fork fork

copy copy

update update

merge
diffs

merge
diffs

join join

What happened?

Buggy code (on conventional threads) became
correct code (on Determinator threads)

Because: (informal intuition)
● Developer can know exactly what “version”

of shared state in use at any point in code
● Synchronization defined by program logic

→ semantically deterministic, predictable

Details: [Aviram/Ford/Zhang, WoDet '11]

How Determinator Works

Determinator OS consists of:
● Minimal microkernel providing

– 1 abstraction: hierarchy of spaces

– 3 system calls: PUT, GET, RET

– no files, shared memory, pipes, sockets, ...

● User-level runtime
– emulates subset of Unix API: procs, files, etc.

– it's a library → all facilities optional

Determinator Microkernel

Determinator OS Architecture

Device I/O

Child Space Child Space

Grandchild Space Grandchild Space

Parent/Child
Interaction

Parent/Child
Interaction

Root SpaceRegisters
(1 thread)

Address Space

Snapshot

Hardware

Code Data
Code Data

Child2 Space

Code Data

Child1 Space

Code Data

2a. copy
into Child2

1a. copy
into Child1

2b. save
snapshot

1b. save
snapshot

Threads, Determinator Style

Parent Space
Multithreaded

Process

Code Data

Parent:
1. thread_fork(Child1): PUT
2. thread_fork(Child2): PUT
3. thread_join(Child1): GET
4. thread_join(Child2): GET

Child 1:
read/write memory
thread_exit(): RET

Child 2:
read/write memory
thread_exit(): RET

3. copy diffs
back into Parent

4. copy diffs
back into parent

writes writes

Slow? Not necessarily...

Copy/snapshot quickly via copy-on-write (COW)
● Mark all pages read-only
● Duplicate mappings rather than pages
● Copy pages only on write attempt

Multi-granularity virtual diff & merge
● If only parent or child has modified a page,

reuse modified page: no byte-level work
● If both parent and child modified a page,

perform byte-granularity diff & merge

File Systems in Determinator

Each process has a complete file system replica
in its address space
● a “distributed FS”

w/ weak consistency
● fork() makes virtual copy
● wait() merges changes

made by child processes
● merges at file rather than byte granularity

Determinator Kernel

File
System

Root
Process

File
System

Child
Process

File
System

Child
Process

File System
Synchronization

Example: Parallel Make/Scripts,
Conventional Unix Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

read Makefile, compute dependencies
fork worker shell

$ make

stage1 <foo.in >tmpfile
stage2 <tmpfile >foo.out
rm tmpfile

stage1 <bar.in >tmpfile
stage2 <tmpfile >bar.out
rm tmpfile

combine foo.out bar.out
>result

Example: Parallel Make/Scripts,
Conventional Unix Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

read Makefile, compute dependencies
fork worker processes

$ make -j (parallel make)

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

rm tmpfile

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

rm tmpfile
tmpfile

corrupt!

read foo.out, bar.out
write result

Example: Parallel Make/Scripts,
Determinator Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

$ make -j

read Makefile, compute dependencies
fork worker processes

copy file
system

copy file
system

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

rm tmpfile

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

rm tmpfile

read foo.out, bar.out
write result

merge file
systems

merge file
systems

What Happened to Races?

Read/Write races: no longer possible
● writes propagate only via synchronization
● reads always see last write by same thread,

else value at last synchronization point

w(x)

r(x)

w(x)

What Happened to Races?

Write/Write races:
● go away if threads “undo” their changes

– tmpfile in make -j example

● otherwise become deterministic conflicts
– always detected at join/merge point

– runtime exception, just like divide-by-zero

w(x) w(x)

trap!

Example: Parallel Make/Scripts,
Determinator Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

$ make -j

read Makefile, compute dependencies
fork worker processes

copy file
system

copy file
system

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

merge file
systems

tmpfile: conflict detected!

Talk Outline

✔ Introduction: Parallelism and Data Races
✔ Determinator: a Determinism-Enforcing OS
● Is Determinism Efficient, General, Usable?
● Why System-Enforced Determinism?
● Conclusion

Is it Efficient, General, Usable?

Can we...
● Make it efficient enough for everyday use?
● Support non-hierarchical synchronization?
● Run nondeterministic pthreads-style code?
● Make it accessible to ordinary developers?
● Support distributed execution?

Yes we can! (we think)

Determinator Performance

Determinator v1 for 32-bit x86 evaluated in:
● “Efficient System-Enforced Deterministic

Parallelism”, OSDI 2010 – Best Paper Award

Determinator v2 for 64-bit x86 now working:
● Larger address spaces for larger benchmarks,

utilize more CPU cores efficiently, ...

Speedup over 1 CPU

Performance Relative to Linux

higher-overhead
synchronization
(control + data)

low-overhead
synchronization
(control only)

Why can Performance Improve?

Conventional
Shared Memory

Conventional
Shared Memory

Determinator
“Shared Memory”

contention
on shared
memory
accesses

fork

join

fork

join

no contention
on private
memory
accesses

Relative Speed vs Problem Size

Is Determinator's Model General?

Determinator v1 directly supported only
simple hierarchical synchronization
● e.g., fork, join, barrier

Determinator v2 generalizes to support
general non-hierarchical synchronization
● via producer-consumer shared memory

General “Workspace Consistency”

Thread A

REL
ACQ(B1)

REL

Thread B

ACQ(A2)

RELA1
ACQ(A1)

Thread C

REL
ACQ(C2)

REL
ACQ(B2)

REL
ACQ(C3)

A2

C1

C2

REL
ACQ(C1)

C3

B1

B2

ACQ(B1)

Deterministic analog of
release consistency
● releases & acquires

explicitly paired
● updates propagate

only when required to

Described in
[WoDet '11]

Example: Pipelines

acq(t0,1)

t0 t1 t2

rel()

acq(t1,1)

rel()

Stage 1

Stage 2

Stage 3

acq(t0,2)

rel()

acq(t1,2)

rel()

Stage 1

Stage 2

Stage 3

acq(t0,3)

rel()

Stage 1

Stage 2

rel()

Stage 1

slice 2

slice 2

slice 2

Example: Parallel Video Codec

slice 1

slice 2

slice 3

I-frame B-frame P-frame

t0 t1 t2

slice 1

slice 2

slice 3

slice 1

slice 2

slice 3

slice 1

slice 1

slice 1slice 3

slice 3

slice 3

slice 2

slice 1

slice 2

slice 3

slice 1

slice 3

output
video
frames

B-frame

t3

Child P2

Producer/Consumer Virtual Memory

Shared
Memory

Shared
Memory

Consumer
Mapping

Producer
Mapping

Fix (Producer)

Read (Consumer)

Child P1

Consumer
Mapping

Producer
Mapping

Parent P0

Producer
Mapping

Producer
Mapping

OS analog of futures, I-structures [Arvind]

Backward Compatibility

Can we support legacy, nondeterministic,
pthreads-style parallel code when needed?

Yes – via deterministic scheduling
– synthesize artificial “time schedule” for threads

– similar to techniques in DMP, CoreDet, Grace

But non-ideal in long term
– mutexes etc still semantically nondeterministic

– “synthetic time” still unpredictable to developer

– new inputs, new compiler, new options →
new time schedule → new heisenbugs

N-instruction
execution
quanta

App
Thread

3
Fork 3

App
Thread

2
Fork 2

Sync 3

Sync 2

Sync 3

Sync 2

Deterministic Scheduling Example

Scheduler
Thread

App
Thread

1
Fork 1

Sync 1

Sync 1

Making Determinism Accessible

To get a deterministic programming model,
do developers need to relearn from scratch?
● Unfamiliar languages, parallel abstractions?

Maybe not!
● Existing high-level parallel frameworks such

as OpenMP are already “near-deterministic”
● But “deterministic subsets” not yet rich enough

Uses of Synchronization Idioms

Across SPLASH, NPB, and PARSEC suites

Fork/Join
17.87%

Barrier
14.79%

Work Sharing Constructs
32.77%

Reduction Constructs
1.81%

Work Sharing Idioms
2.77%

Reduction Idioms
11.70%

Pipeline Idioms
3.30%

Task Queue Idioms
3.62%

Legacy
2.98%

Nondeterministic
8.40%

Reduction Examples

!$omp parallel do reduction(+:t1,t2)
 do j = 1, lastcol-firstcol+1
 t1 = t1 + x(j)*z(j)
 t2 = t2 + z(j)*z(j)
 enddo

Where OpenMP reductions do work: CG.f

 do 155 i = 0, nq - 1
!$omp atomic
 q(i) = q(i) + qq(i)
 155 continue

Where they don't work: EP.f – due to vector data

DOMP: Deterministic OpenMP

Make deterministic model more accessible by:
● Retaining familiarity, compatibility w/ OpenMP
● Enriching deterministic parallel abstractions

– Generalized, user-customizable reductions

● Supporting execution on “vanilla” Linux OS

PhD thesis – Amittai Aviram, Oct 2012
http://dedis.cs.yale.edu/2010/det/

DOMP Speedup on Linux

Can we Distribute Determinism?

Tantalizing potential...
● Time-travel-debug 1000-node data analysis

or scientific computations
● Replay-based intrusion analysis/response

in large distributed systems

But is it practical?
● Simple migration-based mechanism working
● General “Kahn Process Networks” messaging

approach w/ MPI layer in-progress

A Proof-of-Concept Approach

Determinator Kernel

Child (0,1)Child (0,0)

Determinator Kernel

Child (1,1)Child (1,0)

Cross-Node
Space Migration(home)

Cluster Node 0 Cluster Node 1

Transparent process migration among nodes

Distributed Speedup over 1 Node

Ongoing Work

Generalize to support efficient
● “Kahn Process Network” message passing
● Deterministic distributed shared memory

P1

P4

P3

P2

Talk Outline

✔ Introduction: Parallelism and Data Races
✔ Determinator: a Determinism-Enforcing OS
✔ Is Determinism Efficient, General, Usable?
● Why System-Enforced Determinism?
● Conclusion

System-Enforced Determinism

Prior deterministic environments implemented by
unprotected code in user-space libraries
● App bugs can clobber deterministic runtime

Why should we enforce deterministic execution?
● Arbitrarily buggy code always repeatable
● Prevent malware from evading IDS, analysis
● Close timing side-channel leaks...

Key-Stealing via Timing Channels

Code unintentionally modulate shared resources
to reveal secrets when running known algorithms

Acme Data, Inc.
Crypto (AES, RSA, ...)

Process/VM Protection Boundary

Eviltron
Passive Attacker

key-dependent
cache usage

watch memory
access timing

Cloud
Host

Anatomy of a Timing Channel

Two elements required: [Wray 91]
● A resource that can be modulated

by the signaling process (or victim)
● A reference clock enabling the attacker

to observe, extract the modulated signal

Remove either → no timing channel.

Traditional Approaches

Eliminate modulation by partitioning hardware
– Requires hardware modifications

– Can't stat-mux → goodbye cloud computing!

Customer A's Job

Customer B's Job

The Determinator Approach

Allow modulation, eliminate reference clocks
– Works on current hardware, stat-mux allowed

Customer A's Job

Customer B's Job

The Determinator Approach

Allow modulation, eliminate reference clocks
– Works on current hardware, stat-mux allowed

Customer A's Job

Customer B's Job

Timing Information Flow Control

Alice's Gateway
{A+,A-,Bf

-}
Bob's Gateway

{B+,B-,Af
-}

AliceAlice Bob

Job
{A/A∞}

Result
{A/A∞,B∞}

Shared Deterministic
 Compute Server

Job
{B/B∞}

Result
{B/A∞,B∞}

Untrusted Scheduler
{A,B/A∞,B∞}

Control
{A,B/A∞,B∞}

Demand
{A,B/A∞,B∞}

Pacer
freq f

Pacer
freq f

Result
{A/Af,Bf}

Job
{B/B∞}

Result
{B/Af,Bf}

Initial exploration in:
● Determinating Timing

Channels in the
Cloud [CCSW '10]

● Plugging Side-
Channel Leaks with
Timing Information
Flow Control
[HotCloud '12]

Talk Outline

✔ Introduction: Parallelism and Data Races
✔ Determinator: a Determinism-Enforcing OS
✔ Is Determinism Efficient, General, Usable?
✔ Why System-Enforced Determinism?
● Conclusion

Conclusion

In a pervasively parallel world, can we live in a
deterministic model most–or all–the time?

Determinator suggests pervasive determinism is
– Practical even with existing languages

– Even efficient, as problem sizes increase

– Has unexpected uses, especially if enforced

Further information: http://dedis.cs.yale.edu

Funding: NSF CNS-1017206, DARPA CRASH

http://dedis.cs.yale.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

