

Towards Predictable,
Heisenbug-Free

Parallel Software Environments

Bryan Ford
Amittai Aviram, Yu Zhang,
Shu-Chun Weng, Sen Hu

Decentralized/Distributed Systems Group,
Yale University

http://dedis.cs.yale.edu/

Harvard University – November 3, 2011

http://dedis.cs.yale.edu/

Pervasive Parallelism

CPU

RAM

I/O

Uniprocessor

CPU

RAM I/O

CPU

Multiprocessor

Core Core
Core Core

Core Core
Core Core

Core Core
Core Core

Core Core
Core Core

RAM RAM

RAM

I/O

RAM

I/O

Multicore

RAM RAM

RAM

I/O

RAM

I/O

“Many-core”

Industry shifting from “faster” to “wider” CPUs

Today's Grand Software Challenge

Parallelism makes programming harder.

Why? Parallelism introduces:
● Nondeterminism (in general)

– Execution behavior subtly depends on timing

● Data Races (in particular)
– Unsynchronized concurrent state changes

→ Heisenbugs: sporadic, difficult to reproduce

Races are Everywhere

x = 2x = 1

Write/Write

y = xx = 2

Read/Write

● Memory Access

● File Access

● Synchronization

● System APIs

rename()open()

lock;
 x *= 2;
unlock;

lock;
 x++;
unlock;

malloc()
→ ptr

malloc()
→ ptr

open()
→ fd

open()
→ fd

Living With Races

“Don't write buggy programs.”

Logging/replay tools (BugNet, IGOR, …)
● Reproduce bugs that manifest while logging

Race detectors (RacerX, Chess, …)
● Analyze/instrument program to help find races

Deterministic schedulers (DMP, Grace, CoreDet)
● Synthesize a repeatable execution schedule

All: help manage races but don't eliminate them

“Heisenbug papers” at SOSP/OSDI
(detecting, replaying, avoiding, recovering from...)

Must We Live With Races?

Ideal: a parallel programming model in which
races don't arise in the first place.

Already possible in particular languages
● Pure functional languages (Haskell)
● Deterministic value/message passing (SHIM)
● Separation-enforcing type systems (DPJ)

What about race-freedom for any language?

Introducing Determinator

New OS offering a race-free parallel environment
● Compatible with arbitrary (existing) languages

– C, C++, Java, assembly, …

● Avoids races at multiple abstraction levels
– Shared memory, file system, synch, ...

● Takes clean-slate approach for simplicity
– Ideas could be retrofitted into existing Oses

● Current focus: compute-bound applications
– Early prototype, still work-in-progress...

Talk Outline

✔ Introduction: Parallelism and Data Races
● Determinator Programming Model and Design

– Deterministic “threads” and “shared memory”

– Deterministic “processes” and “file systems”

● Challenges and Ongoing Work
– New abstractions versus legacy compatibility

– Performance and scalability

– Deterministic distributed computing

● Conclusion

Determinator's Programming Model

Private workspace model for shared state

1.on fork, “check-out” a copy of all shared state

2.thread reads, writes private working copy only

3.on join, “check-in” and merge changes

fork, copy shared stateparent
thread/

process

parent
thread/

process
child

thread/
process

parent's
working
state

child's
working
state

join, merge shared state

Seen This Before?

Precedents for private workspace model:
● DOALL in early parallel Fortran computers

– Burroughs FMP 1980, Myrias 1988

– Language-specific, limited to DO loops

● Version control systems (cvs, svn, git, …)
– Manual check-in/check-out procedures

– For files only, not shared memory state

● Snapshot consistency in databases
– For them it's a bug, for us it's a feature

What does this Mean?

Determinator applies private workspace model
pervasively to all application-visible shared state
● Threads and shared memory
● Processes and shared file systems

Extensively use synchronization, reconciliation
techniques developed for distributed systems...
● think “distributed system in a box”

t[0] t[1]

Example: Gaming/Simulation,
Conventional Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

actors
[0] [1]

main thread

read read

update update

synchronize,
next time step...

t[0] t[1]

actors
[0] [1]

main thread

Example: Gaming/Simulation,
Conventional Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

update

oops!
corruption/crash

due to race

read

(partial)
update

read

actors

[0] [1]

main thread

Example: Gaming/Simulation,
Determinator Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

t[0] t[1]fork fork

copy copy

update update

merge
diffs

merge
diffs

join join

What happened?

Buggy code (on conventional threads) became
correct code (on Determinator threads)

Because: (informal intuition)
● Developer can know exactly what “version”

of shared state in use at any point in code
● Synchronization defined by program logic

→ semantically deterministic, predictable

Details: [Aviram/Ford/Zhang, WoDet '11]

How Determinator Works

Determinator OS consists of:
● Minimal microkernel providing

– 1 abstraction: hierarchy of spaces

– 3 system calls: PUT, GET, RET

– no files, shared memory, pipes, sockets, ...

● User-level runtime
– emulates subset of Unix API: procs, files, etc.

– it's a library → all facilities optional

Determinator Microkernel

Determinator OS Architecture

Device I/O

Child Space Child Space

Grandchild Space Grandchild Space

Parent/Child
Interaction

Parent/Child
Interaction

Root SpaceRegisters
(1 thread)

Address Space

Snapshot

Hardware

Code Data
Code Data

Child2 Space

Code Data

Child1 Space

Code Data

2a. copy
into Child2

1a. copy
into Child1

2b. save
snapshot

1b. save
snapshot

Threads, Determinator Style

Parent Space
Multithreaded

Process

Code Data

Parent:
1. thread_fork(Child1): PUT
2. thread_fork(Child2): PUT
3. thread_join(Child1): GET
4. thread_join(Child2): GET

Child 1:
read/write memory
thread_exit(): RET

Child 2:
read/write memory
thread_exit(): RET

3. copy diffs
back into Parent

4. copy diffs
back into parent

writes writes

Slow? Not necessarily...

Copy/snapshot quickly via copy-on-write (COW)
● Mark all pages read-only
● Duplicate mappings rather than pages
● Copy pages only on write attempt

Multi-granularity virtual diff & merge
● If only parent or child has modified a page,

reuse modified page: no byte-level work
● If both parent and child modified a page,

perform byte-granularity diff & merge

What about File Systems?

File systems traditionally conflate two functions:

1.Hierarchical abstraction: files, directories

2.Durable/persistent storage: survives reboot

Determinator's design separates these functions
● File system offers abstraction, not persistence
● Persistence done by checkpointing spaces

– Work-in-progress. Precedent: KeyKOS, L3

File Systems in Determinator

Each process has a complete file system replica
in its address space
● a “distributed FS”

w/ weak consistency
● fork() makes virtual copy
● wait() merges changes

made by child processes
● merges at file rather than byte granularity

Determinator Kernel

File
System

Root
Process

File
System

Child
Process

File
System

Child
Process

File System
Synchronization

Example: Parallel Make/Scripts,
Conventional Unix Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

read Makefile, compute dependencies
fork worker shell

$ make

stage1 <foo.in >tmpfile
stage2 <tmpfile >foo.out
rm tmpfile

stage1 <bar.in >tmpfile
stage2 <tmpfile >bar.out
rm tmpfile

combine foo.out bar.out
>result

Example: Parallel Make/Scripts,
Conventional Unix Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

read Makefile, compute dependencies
fork worker processes

$ make -j (parallel make)

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

rm tmpfile

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

rm tmpfile
tmpfile

corrupt!

read foo.out, bar.out
write result

Example: Parallel Make/Scripts,
Determinator Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

$ make -j

read Makefile, compute dependencies
fork worker processes

copy file
system

copy file
system

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

rm tmpfile

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

rm tmpfile

read foo.out, bar.out
write result

merge file
systems

merge file
systems

What Happened to the Races?

Read/Write races: go away entirely
● writes propagate only via synchronization
● reads always see last write by same thread,

else value at last synchronization point

w(x)

r(x)

w(x)

What Happened to the Races?

Write/Write races:
● go away if threads “undo” their changes

– tmpfile in make -j example

● otherwise become deterministic conflicts
– always detected at join/merge point

– runtime exception, just like divide-by-zero

w(x) w(x)

trap!

Example: Parallel Make/Scripts,
Determinator Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

$ make -j

read Makefile, compute dependencies
fork worker processes

copy file
system

copy file
system

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

merge file
systems

tmpfile: conflict detected!

Talk Outline

✔ Introduction: Parallelism and Data Races
✔ Determinator Programming Model and Design

– Deterministic “threads” and “shared memory”

– Deterministic “processes” and “file systems”

● Challenges and Ongoing Work
– New abstractions versus legacy compatibility

– Performance and scalability

– Deterministic distributed computing

● Conclusion

The “Pthreads Problem”

Mutex locks, condition variables, etc., have
fundamentally nondeterministic semantics
● Lock order implicitly depends on “time” –

is not specified by program logic
● Determinator runtime can “synthesize time”

for backward compatibility with pthreads code
– via deterministic scheduling, as in CoreDet

● But synthetic time is still arbitrary!
– new inputs, new compiler, new options →

new time schedule → more heisenbugs

Towards Deterministic Parallel APIs

To escape race-prone parallel programming,
must wean ourselves from pthreads-like APIs!

Ongoing Determinator work is exploring:
● General deterministic synchronization models

– [Aviram/Ford/Zhang, WoDet '11]

● Deterministic OpenMP-style shared memory
– [Aviram/Ford, HotPar '11]

● Deterministic MPI-style message passing
– [Zhang/Ford, APsys '11]

Performance and Scalability

Question: can a Determinator-like model be
efficient and scalable enough for everyday use?

Current answer: it depends (of course)

Single-Node Speedup over 1 CPU

Single-Node Performance:
Determinator versus Linux

Coarse-grained Fine-grained

Drilldown: Varying Granularity
(Parallel Quicksort)

“break-even point”

Drilldown: Varying Granularity
(Parallel Matrix Multiply)

Improving Scalability with
Producer/Consumer Virtual Memory

● In Determinator v1 [OSDI '10], threads could
synchronize only via common parent space

– hierarchy → fundamental scalability bottleneck

● In Determinator v2 (in-progress), threads can
create peer-to-peer “virtual memory pipes”

– single producer, multiple consumer (SPMC)

– emulate unicast, broadcast communication

Child P2

Producer/Consumer Virtual Memory

Shared
Memory

Shared
Memory

Consumer
Mapping

Producer
Mapping

Fix (Producer)

Read (Consumer)

Child P1

Consumer
Mapping

Producer
Mapping

Parent P0

Producer
Mapping

Producer
Mapping

Determinator v2 (preliminary)
Performance Relative to Linux

CG EP FT IS LU MG
0.10

1.00

10.00

1 CPU
2 CPUs
4 CPUs
8 CPUs

Benchmark (from NPB-MPI suite)

S
pe

e
d

u
p

 o
ve

r
L

in
ux

 (
lo

g
sc

a
le

)

bad news
(unsurprising)

good news
good news

(wrt v1)

bad news

Distributed Determinism?

Tantalizing potential...
● Time-travel-debug 1000-node data analysis

or scientific computations
● Replay-based intrusion analysis/response

in large distributed systems
● New solutions to timing channels in the cloud

[Aviram/Hu/Ford/Gummadi, CCSW '10]

But is it practical?

A Proof-of-Concept Approach

Determinator Kernel

Child (0,1)Child (0,0)

Determinator Kernel

Child (1,1)Child (1,0)

Cross-Node
Space Migration(home)

Cluster Node 0 Cluster Node 1

Transparent process migration among nodes

Distributed Speedup over 1 Node

Distributed Performance vs Linux

Conclusion

Determinator offers and explores a race free,
deterministic parallel programming model

– Avoids races via private workspace model

– Supports existing languages

– Thread- and process-level parallelism

Many open questions for future work
– The “right” parallel abstractions?

– Can it be made efficient enough? Distributed?

Further information: http://dedis.cs.yale.edu

http://dedis.cs.yale.edu/

Acknowledgments

Thank you:
Zhong Shao, Rammakrishna Gummadi,
Frans Kaashoek, Nickolai Zeldovich, Sam King,
the OSDI reviewers

Funding:
ONR grant N00014-09-10757
NSF grant CNS-1017206

Further information: http://dedis.cs.yale.edu

http://dedis.cs.yale.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

