
Deterministic OpenMP
For Race-Free Parallelism

Amittai Aviram and Bryan Ford
Decentralized/Distributed Systems (DeDiS)

Department of Computer Science
Yale University

HotPar 2011
Berkeley, CA
26 May 2011



26 May 2011 HotPar 2011 | Berkeley, CA 2

Deterministic Concurrency

● Reproduce any bug
● Replay computation exactly → Byzantine Fault 

Tolerance, peer-review accountability
● Address timing channel attacks? (CCSW '10)
● Build an end-to-end verifiable system

Parallel program : same input → same output 
and behavior



26 May 2011 HotPar 2011 | Berkeley, CA 3

The Underlying Problem

● Conventional programming models inherently 
nondeterministic

● Rely on naturally nondeterministic 
synchronization primitives: mutex locks, 
condition variables, ...



26 May 2011 HotPar 2011 | Berkeley, CA 4

Definition (WoDet '11)

● Which threads synchronize
● Where in each one's respective execution 

sequence they do so

Naturally deterministic synchronization:

Programming logic alone determines

Consequence:
Timing of arrival at synchronization points
does not affect program behavior or output



26 May 2011 HotPar 2011 | Berkeley, CA 5

Synchronization Abstractions

● Fork/join
● Barrier
● Future

● Mutex lock
● Condition variable
● Semaphore

Naturally 
Deterministic

Naturally 
Nondeterministic



26 May 2011 HotPar 2011 | Berkeley, CA 6

Naturally Nondeterministic 
Synchronization Causes Problems

● Burdens the programmer to get 
synchronization right

● Even when correct, allows high-level data 
races



26 May 2011 HotPar 2011 | Berkeley, CA 7

High-Level Data Race

A
lock(x)

x := x * 2
unlock(x)

B
lock(x)

x := x + 3
unlock(x)

? B gets lock first
x := 2x + 6

A gets lock first
x := 2x + 3

HEISENBUG



26 May 2011 HotPar 2011 | Berkeley, CA 8

Synchronization Abstractions

● Fork/join
● Barrier
● Future

● Mutex lock
● Condition variable
● Semaphore

Naturally 
Deterministic

Naturally 
Nondeterministic

Safe Risky



26 May 2011 HotPar 2011 | Berkeley, CA 9

Our Goal

● Naturally deterministic programming model
● Let the programmer live in a deterministic 

world
● Deterministic programming abstractions 

expressive enough for most algorithms
● Runtime support that guarantees race-free 

deterministic execution



26 May 2011 HotPar 2011 | Berkeley, CA 10

This Talk

● The Goal √
A Naturally Deterministic Programming Model

● Background & Related Work
● From OpenMP to DOMP Semantics
● DOMP Runtime
● Efficiency
● Conclusion



26 May 2011 HotPar 2011 | Berkeley, CA 11

Background & Related Work



26 May 2011 HotPar 2011 | Berkeley, CA 12

● New languages
Dataflow languages, SHIM, Jade, DPJ, ...

– Have to rewrite code

● Deterministic scheduling
DMP, CoreDet, Grace, Kendo, …

– Keeps underlying nondeterministic programming 
model

– Data races reproducible but not eliminated

Previous Approaches



26 May 2011 HotPar 2011 | Berkeley, CA 13

Deterministic Scheduling & Races
int x = 5;

// Start parallel execution here.
{

// Thread A
{

if (input_is_as_usual)
do_a_lot();

x++;
}
// Thread B
{

x++;
}

}

● Programmer forgets to 
synchronize

● Tests run great!
● On “unusual” input, 

deterministic scheduler 
may always give 6 L

● We want this code never 
to work!



26 May 2011 HotPar 2011 | Berkeley, CA 14

Working-Copies Determinism
(WoDet '11)

● Data like documents in version control system

● Fork-join parallelism model—naturally deterministic 
semantics

● At fork: runtime gives each concurrent thread a 
working copy of state (like “checkout”)

● Concurrent threads are isolated

● At barrier and join: runtime merges copies

● Two writes to same location → ERROR!



26 May 2011 HotPar 2011 | Berkeley, CA 15

Shared
memory

Thread
A

Thread
B

A's writes B reads “old” values

Join: merge changes
Conflicting writes → ERROR!

Fork:  copy state

B's writes



26 May 2011 HotPar 2011 | Berkeley, CA 16

Determinator

● OS kernel based on working-copies 
determinism (OSDI '10)

● Race-free processes, threads, I/O
● Naturally deterministic threading API, but 
● Limited to pthread-like fork/join and barrier
● Need for more expressive API



26 May 2011 HotPar 2011 | Berkeley, CA 17

A Better API
Starting point: OpenMP

Attractive because:
● Expressive parallel programming API
● Already well-established
● Most features already naturally deterministic

– Mostly compatible with working-copies 
determinism

But, ...



26 May 2011 HotPar 2011 | Berkeley, CA 18

Why OpenMP Is Not the Answer

OpenMP includes naturally nondeterministic 
synchronization abstractions
● atomic
● critical
● flush



26 May 2011 HotPar 2011 | Berkeley, CA 19

Why OpenMP Is Not the Answer

OpenMP includes naturally nondeterministic 
synchronization abstractions
● atomic
● critical
● flush

We would like simply to disallow these, but



26 May 2011 HotPar 2011 | Berkeley, CA 20

Why OpenMP Is Not the Answer

OpenMP includes naturally nondeterministic 
synchronization abstractions
● atomic
● critical
● flush

We would like simply to disallow these, but

Programmers find need to rely on them!



26 May 2011 HotPar 2011 | Berkeley, CA 21

Key Insight

● As popular benchmark suites show, 
programmers rely on nondeterministic 
primitives—but

● In most cases, they use them to implement 
deterministic higher-level  idioms

● We need deterministic high-level abstractions 
to express these idioms

● Need to extend OpenMP to fill these gaps



26 May 2011 HotPar 2011 | Berkeley, CA 22

Primitives versus Idioms
● Primitives (in OpenMP, pthreads, etc.)

– Deterministic:  fork/join, barrier, 
OpenMP work-sharing

– Nondeterministic: locks, condition variables, 
atomic, critical, flush …

● Idioms
– Deterministic: reduction, pipeline

ad-hoc work-sharing

– Nondeterministic: load balancing, task queues, 
work stealing, user-level scheduling



26 May 2011 HotPar 2011 | Berkeley, CA 23

Primitives versus Idioms
● Primitives (in OpenMP, pthreads, etc.)

– Deterministic:  fork/join, barrier, work-sharing 
(OpenMP only)

– Nondeterministic: locks, condition variables, 
atomic, critical, flush …

● Idioms
– Deterministic: work-sharing, reduction, pipeline 

– Nondeterministic: load balancing, task queues, 
work stealing, user-level scheduling

~92%

~8%



26 May 2011 HotPar 2011 | Berkeley, CA 24

Code Analysis

● Manually inspect & analyze SPLASH, NPB-
OMP, and PARSEC benchmarks

● Count and classify all uses of synchronization 
primitives

● Classify uses of nondeterministic primitives by 
idiom they are used to build



26 May 2011 HotPar 2011 | Berkeley, CA 25

Synchronization in SPLASH
Deterministic Primitives 
(56%)

Nondeterministic Primitives
(44%)

fork/join barrier work sharing
idioms

reduction 
idioms

pipeline idioms load 
balancing

barnes 1 6 6

fmm 1 13 28

ocean 1 40 2 2

radiosity 3 5 2 8 21

volrend 5 13 8 6

water-
nsquared

1 9 1 7

water-spatial 1 9 1 4 2

cholesky 1 4 1 2

fft 1 7 1

lu 1 5 1

radix 1 7 1

7.11% 49.37% 21.76% 11.30% 0.84% 9.62%

The only 
nondeterministic
idioms



26 May 2011 HotPar 2011 | Berkeley, CA 26

Synchronization in NPB-OMP
Deterministic Primitives
(70%)

Nondeterministic Primitives
(30%)

fork/join barrier reduction idioms pipeline idioms

BT 10 1

CG 14

DC 2

EP 2 1 1

FT 8

IS 3 2

LU 9 3 2 10

LU-HP 15 2

MG 11

SP 14 2

UA 59 44

68.69% 2.34% 24.30% 4.67%

All nondeterministic abstractions used to build deterministic abstractions.



26 May 2011 HotPar 2011 | Berkeley, CA 27

Synchronization in PARSEC
Deterministic Primitives
(62%)

Nondeterministic Primitives
(38%)

fork/join barrier work sharing 
idioms

reduction 
idioms

pipeline 
idioms

load 
balancing

blackscholes 1

bodytrack 4

canneal 1 1 1

dedup 1 1 1 10

facesim 2 10

ferret 7

fluidanimate 13

freqmine 7 2

raytrace 1 1

streamcluster 1 27 3

swaptions

vips 15

x264 2 4

37.82% 24.37% 3.36% 0.0% 11.76% 22.69%

The only nondeterministic
idioms



26 May 2011 HotPar 2011 | Berkeley, CA 28

Fork/join
36.54%

Barrier
26.57%

Work sharing
9.79%

Reduction
13.81%

Pipeline
4.55%

Load balancing
8.74%

How Programs Use Synchronization



26 May 2011 HotPar 2011 | Berkeley, CA 29

Fork/join
36.54%

Barrier
26.57%

Work sharing
9.79%

Reduction
13.81%

Pipeline
4.55%

Load balancing
8.74%

How Programs Use Synchronization

Nondeterministic
primitives 
categorized by useDeterministic 

primitives



26 May 2011 HotPar 2011 | Berkeley, CA 30

Fork/join
36.54%

Barrier
26.57%

Work sharing
9.79%

Reduction
13.81%

Pipeline
4.55%

Load balancing
8.74%

How Programs Use Synchronization

Nondeterministic
primitives 
categorized by useDeterministic 

primitives



26 May 2011 HotPar 2011 | Berkeley, CA 31

Fork/join
36.54%

Barrier
26.57%

Work sharing
9.79%

Reduction
13.81%

Pipeline
4.55%

Load balancing
8.74%

How Programs Use Synchronization

Nondeterministic
primitives 
categorized by useDeterministic 

primitives

Nondeterministic 
algorithm



26 May 2011 HotPar 2011 | Berkeley, CA 32

Uses of Nondeterministic Primitives

Work sharing
26.54%

Reduction
37.44%

Pipeline
12.32%

Load balancing
23.70%



26 May 2011 HotPar 2011 | Berkeley, CA 33

Study Conclusion

Many (most) parallel programs could be 
expressed exclusively in a naturally determistic 
API if it includes abstractions for common high-
level deterministic idioms.

OpenMP → DOMP!



26 May 2011 HotPar 2011 | Berkeley, CA 34

● The Goal √
● Background & Related Work √
● From OpenMP to DOMP Semantics
● DOMP Runtime
● Efficiency
● Conclusion



26 May 2011 HotPar 2011 | Berkeley, CA 35

From OpenMP to DOMP



26 May 2011 HotPar 2011 | Berkeley, CA 36

Deterministic OpenMP (DOMP)

● Redefine compatible OpenMP constructs to be 
explicitly deterministic

● Offer deterministic alternatives to 
nondeterministic OpenMP constructs



26 May 2011 HotPar 2011 | Berkeley, CA 37

OpenMP
● Annotations to parallelize a sequential program

● Legacy languages—little (no) rewriting

● Directives annotate structured blocks

– parallel—general fork/join

– for—parallel loop execution

– sections—parallel tasks
● Optional clauses modify default behavior

– shared, private, etc. for variables

– reduction (sum, product, ...) across threads



26 May 2011 HotPar 2011 | Berkeley, CA 38

Sequential Version
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {

for (int i = 0; i < n; i++)
for (int j = 0; j < p; j++) {

C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}



26 May 2011 HotPar 2011 | Berkeley, CA 39

OpenMP Version
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}



26 May 2011 HotPar 2011 | Berkeley, CA 40

OpenMP Semantics
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Starts with 
single parent

thread



26 May 2011 HotPar 2011 | Berkeley, CA 41

OpenMP Semantics
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Creates
new threads,

distributes work

Starts with 
single parent

thread



26 May 2011 HotPar 2011 | Berkeley, CA 42

OpenMP Semantics
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Creates
new threads,

distributes work

Joins threads
to parent

Starts with 
single parent

thread



26 May 2011 HotPar 2011 | Berkeley, CA 43

DOMP Semantics
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}



26 May 2011 HotPar 2011 | Berkeley, CA 44

DOMP Semantics
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Distributes copies
of shared state



26 May 2011 HotPar 2011 | Berkeley, CA 45

DOMP Semantics
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p, 

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}
Merges copies

of shared vars into 
parent's vars

(if no data race)

Distributes copies
of shared state



26 May 2011 HotPar 2011 | Berkeley, CA 46

OpenMP Reductions

● Sum, product, ... on the same variable across 
threads

● Lock-free safety from data races
● Results available only after relevant parallel 

block
● NATURALLY DETERMINISTIC!



26 May 2011 HotPar 2011 | Berkeley, CA 47

OpenMP Reduction
int x = 5;
#pragma omp parallel sections reduction(+: x)
{

#pragma omp section
{

if (input_is_as_usual)
do_a_lot();

x++;
}
#pragma omp section
{

x++;
}

}
printf(“x = %d\n”, x) // Always prints 7!



26 May 2011 HotPar 2011 | Berkeley, CA 48

OpenMP Reduction
int x = 5;
#pragma omp parallel sections reduction(+: x)
{

#pragma omp section
{

if (input_is_as_usual)
do_a_lot();

x++;
}
#pragma omp section
{

x++;
}

}
printf(“x = %d\n”, x) // Always prints 7!

sections assigns each section to 
a different thread

reduction aggregates the + on x 
across sections/threads



26 May 2011 HotPar 2011 | Berkeley, CA 49

Unfortunately, ...

Not general enough
● Arithmetic or logical operations only
● Scalar types only
● Commutative and associative only

… Forcing the programmer to resort to hand-
rolling reductions out of naturally 
nondeterministic primitives



26 May 2011 HotPar 2011 | Berkeley, CA 50

DOMP General Reduction

// Assume: dimensions n, m, p have been set globally.
// Returns the product of two matrices.
extern matrix * matrix_multiply(matrix * A, matrix * B);

matrix * I = new_identity_matrix(n, m);
matrix * C = matrices[0];

#pragma omp parallel for reduction(matrix_multiply : I : C)
for (int i = 1; i < NUM_MATRICES; i++)

C = matrix_multiply(C, matrices[i]);
// C now points to the product of all the matrices in the array matrices.



26 May 2011 HotPar 2011 | Berkeley, CA 51

DOMP General Reduction

// Assume: dimensions n, m, p have been set globally.
// Returns the product of two matrices.
extern matrix * matrix_multiply(matrix * A, matrix * B);

matrix * I = new_identity_matrix(n, m);
matrix * C = matrices[0];

#pragma omp parallel for reduction(matrix_multiply : I : C)
for (int i = 1; i < NUM_MATRICES; i++)

C = matrix_multiply(C, matrices[i]);
// C now points to the product of all the matrices in the array matrices.

f : (a,b) → c | a,b,c ∈ T



26 May 2011 HotPar 2011 | Berkeley, CA 52

DOMP General Reduction

// Assume: dimensions n, m, p have been set globally.
// Returns the product of two matrices.
extern matrix * matrix_multiply(matrix * A, matrix * B);

matrix * I = new_identity_matrix(n, m);
matrix * C = matrices[0];

#pragma omp parallel for reduction(matrix_multiply : I : C)
for (int i = 1; i < NUM_MATRICES; i++)

C = matrix_multiply(C, matrices[i]);
// C now points to the product of all the matrices in the array matrices.

f : (a,b) → c | a,b,c ∈ T

Identity element



26 May 2011 HotPar 2011 | Berkeley, CA 53

DOMP General Reduction

// Assume: dimensions n, m, p have been set globally.
// Returns the product of two matrices.
extern matrix * matrix_multiply(matrix * A, matrix * B);

matrix * I = new_identity_matrix(n, m);
matrix * C = matrices[0];

#pragma omp parallel for reduction(matrix_multiply : I : C)
for (int i = 1; i < NUM_MATRICES; i++)

C = matrix_multiply(C, matrices[i]);
// C now points to the product of all the matrices in the array matrices.

f : (a,b) → c | a,b,c ∈ T

Identity element

Reduction 
variable(s)



26 May 2011 HotPar 2011 | Berkeley, CA 54

Pipelines

Another deterministic idiom programmers hand-
roll from naturally nondeterministic primitives for 
lack of high-level abstractions

E.g. LU (NPB-OMP):  Uses ad hoc 
synchronization (flush memory barrier) to busy-
wait on a flag



26 May 2011 HotPar 2011 | Berkeley, CA 55

DOMP Pipelines
#pragma omp sections pipeline
while x = (more_work(x)) {

#pragma omp section
{

x = do_step_a(x);
}
#pragma omp section
{

x = do_step_b(x);
}
/* … */
#pragma omp section
{

x = do_step_n(x);
}

}



26 May 2011 HotPar 2011 | Berkeley, CA 56

DOMP Pipelines
#pragma omp sections pipeline
while x = (more_work(x)) {

#pragma omp section
{

x = do_step_a(x);
}
#pragma omp section
{

x = do_step_b(x);
}
/* … */
#pragma omp section
{

x = do_step_n(x);
}

}

One thread per 
section

Each section starts 
executing when the 
one before has 
finished

Var x gets its value 
each time from the 
previous section and 
then is thread-private



26 May 2011 HotPar 2011 | Berkeley, CA 57

● The Goal √
● Background & Related Work √
● From OpenMP to DOMP Semantics√
● DOMP Runtime
● Initial Results
● Conclusion



26 May 2011 HotPar 2011 | Berkeley, CA 58

DOMP Runtime



26 May 2011 HotPar 2011 | Berkeley, CA 59

parent thread
working

copy



26 May 2011 HotPar 2011 | Berkeley, CA 60

parent thread
working

copy

FORK



26 May 2011 HotPar 2011 | Berkeley, CA 61

FORK

parent thread
working

copy

working
copy

working
copy

working
copy

reference
copy

hide

copy

copy copy



26 May 2011 HotPar 2011 | Berkeley, CA 62

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy



26 May 2011 HotPar 2011 | Berkeley, CA 63

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy



26 May 2011 HotPar 2011 | Berkeley, CA 64

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

JOIN



26 May 2011 HotPar 2011 | Berkeley, CA 65

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

JOIN merge merge merge



26 May 2011 HotPar 2011 | Berkeley, CA 66

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

JOIN

working
copy

merge merge merge
release



26 May 2011 HotPar 2011 | Berkeley, CA 67

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

parent thread

JOIN

working
copy

merge merge merge
release



26 May 2011 HotPar 2011 | Berkeley, CA 68

● The Goal √
● Background & Related Work √
● From OpenMP to DOMP Semantics√
● DOMP Runtime √
● Efficiency
● Conclusion



26 May 2011 HotPar 2011 | Berkeley, CA 69

Efficiency



26 May 2011 HotPar 2011 | Berkeley, CA 70

Can DOMP be Efficient?

● Problem:
Cost of copying and merging data: 
O(num_threads x bytes_of_data)

● Solution:
Lazy per-page copy-on-write
Lazy page-granularity merge



26 May 2011 HotPar 2011 | Berkeley, CA 71

Previous Experience

● Dthreads, Determinator—both naturally 
deterministic

● Good results for some benchmarks
● Great for “embarrassingly parallel” 

applications
● Fine-grained parallelism can be expensive



26 May 2011 HotPar 2011 | Berkeley, CA 72

2 4 6 8 10 12

DOMP
GOMP

Threads

The Good News``

Naïve matrix 
multiplication 
(2048 x 2048)



26 May 2011 HotPar 2011 | Berkeley, CA 73

2 4 8

DOMP
GOMP

Threads

The Not-So-Good News

PARSEC 
blackscholes for 
OpenMP



26 May 2011 HotPar 2011 | Berkeley, CA 74

By the way ...

In testing, DOMP uncovered a hitherto 
unnoticed data race in the blackscholes 
(OpenMP version) code.  ☺

– Bug-finding is not DOMP's primary goal
– But nice that its model shakes out 

concurrency bugs automatically



26 May 2011 HotPar 2011 | Berkeley, CA 75

Conclusion

● DOMP:  proposed race-free, deterministic 
parallel programming framework

● API based on OpenMP—new semantics & 
extensions

● Applies working-copies approach to enforce 
determinism

● Combines expressiveness, reliability, and (we 
hope) efficiency



26 May 2011 HotPar 2011 | Berkeley, CA 76

Thank you


