
Deterministic OpenMP

Amittai Aviram
Dissertation Defense

Department of Computer Science
Yale University

20 September 2012

20 September 2012 Amittai Aviram | Yale University CS 2

Committee

● Bryan Ford, Yale University, Advisor
● Zhong Shao, Yale University
● Ramakrishna Gummadi, Yale University
● Emery Berger, University of Massachusetts-

Amherst

20 September 2012 Amittai Aviram | Yale University CS 3

The Big Picture

● OpenMP is a well-established annotation
language to parallelize source code

● Deterministic OpenMP (DOMP) is our new
version of OpenMP

– Guarantees the same results for the same input
– Enforces a deterministic programming model
– Catches concurrency bugs
–

20 September 2012 Amittai Aviram | Yale University CS 4

 Unordered Memory Accesses

?y == 0
y == 2

?

?
x = 1

x ==1
x == 2

x = 2 x = 2 y = x

x == 2

x == 1
x == 2

lock
x++

unlock

x = 0
lock
x*=2

unlock

x = 0

20 September 2012 Amittai Aviram | Yale University CS 5

A
lock(x)

x := x + 2
unlock(x)

B
lock(x)

x := x * 3
unlock(x)

Accesses
remained

 unordered

But I got the right
answer on 1,000,000

test runs ...

HEISENBUG

That's 'cause B
happened to go
first — until now!

20 September 2012 Amittai Aviram | Yale University CS 6

Determinism

● program : input → (output, behavior)
● Results are as if memory accesses are always

ordered
● Bugs are always reproducible
● Reproduce computations exactly

● Byzantine fault tolerance
● Accountability systems
● Addressing timing channel attacks

20 September 2012 Amittai Aviram | Yale University CS 7

Two Approaches
Run any parallel program
deterministically, even a racy
one.

Impose a deterministic
schedule on the program.

20 September 2012 Amittai Aviram | Yale University CS 8

Two Approaches
Run any parallel program
deterministically, even a racy
one.

Impose a deterministic
schedule on the program.

Run only deterministic
programs.

Enforce a deterministic
programming model.

20 September 2012 Amittai Aviram | Yale University CS 9

Two Approaches
Run any parallel program
deterministically, even a racy
one.

Impose a deterministic
schedule on the program.

Run only deterministic
programs.

Enforce a deterministic
programming model.

Potentially useful
but can be
problematic

20 September 2012 Amittai Aviram | Yale University CS 10

Two Approaches
Run any parallel program
deterministically, even a racy
one.

Impose a deterministic
schedule on the program.

Run only deterministic
programs.

Enforce a deterministic
programming model.

Determinator OS
(OSDI '10)Potentially useful

but can be
problematic

20 September 2012 Amittai Aviram | Yale University CS 11

Two Approaches
Run any parallel program
deterministically, even a racy
one.

Impose a deterministic
schedule on the program.

Run only deterministic
programs.

Enforce a deterministic
programming model.

DOMP

Determinator OS
(OSDI '10)Potentially useful

but can be
problematic

20 September 2012 Amittai Aviram | Yale University CS 12

DOMP Semantics

● Based on familiar OpenMP API
● Excludes nondeterministic OpenMP constructs

(critical, atomic, flush)
● Extends OpenMP: generalized reduction

construct
● Implements a strict deterministic programming

model

20 September 2012 Amittai Aviram | Yale University CS 13

But can programmers really use a
deterministic programming model?

20 September 2012 Amittai Aviram | Yale University CS 14

Our Analysis

● Analyzed standard parallel benchmarks
● Counted instances of synchronization

constructs
● Deterministic (fork, join, barrier)
● Nondeterministic (mutex locks, condition variables,

etc.)

● Classified nondeterministic instances by use
(idiom)

20 September 2012 Amittai Aviram | Yale University CS 15

We found …
Programmers usually (74%) use
nondeterministic primitives to build
deterministic higher-level idioms for which the
language lacks direct expression.

Work Sharing Idioms
8.44%

Reduction Idioms
35.71%

Pipeline Idioms
10.06%

Task Queue Idioms
11.04%

Legacy
9.09%

Nondeterministic
25.65%

20 September 2012 Amittai Aviram | Yale University CS 16

Making Determinism Accessible

● OpenMP API
● User library for Linux
● Replacement for GCC's OpenMP support

library (libgomp)

● Often a drop-in replacement for libgomp

20 September 2012 Amittai Aviram | Yale University CS 17

Making Determinism Accessible

● OpenMP API
● User library for Linux
● Replacement for GCC's OpenMP support

library (libgomp)

● Often a drop-in replacement for libgomp

OUR GOAL

20 September 2012 Amittai Aviram | Yale University CS 18

Outline

● The Big Picture √
● Background
● Analysis
● Design and Semantics
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 19

Outline

● The Big Picture √
● Background
● Analysis
● Design and Semantics
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 20

Single-Assignment Languages

● Dataflow languages
● Parallel Haskell
● Concurrency Collections (CnC)

20 September 2012 Amittai Aviram | Yale University CS 21

Single-Assignment Languages

● Dataflow languages
● Parallel Haskell
● Concurrency Collections (CnC)

No data races

20 September 2012 Amittai Aviram | Yale University CS 22

Single-Assignment Languages

● Dataflow languages
● Data Parallel Haskell
● Concurrency Collections (CnC)

No data races

Deterministic

20 September 2012 Amittai Aviram | Yale University CS 23

Single-Assignment Languages

● Dataflow languages
● Data Parallel Haskell
● Concurrency Collections (CnC)

No data races

Deterministic

UNFAMILIAR

20 September 2012 Amittai Aviram | Yale University CS 24

Single-Assignment Languages

● Dataflow languages
● Data Parallel Haskell
● Concurrency Collections (CnC)

No data races

Deterministic

UNFAMILIAR

Rewrite
legacy code

20 September 2012 Amittai Aviram | Yale University CS 25

Deterministic Imperative Languages

● SHIM
● Message passing

● Deterministic Parallel Java (DPJ)
● Programmer annotates data with effect classes

20 September 2012 Amittai Aviram | Yale University CS 26

Deterministic Imperative Languages

● SHIM
● Message passing

● Deterministic Parallel Java (DPJ)
● Programmer annotates data with effect classes

20 September 2012 Amittai Aviram | Yale University CS 27

Record-and-Replay Systems

● Instant Replay (1987)
● Recap (1988)
● DejaVu (1998)
● ReVirt (2002)
● Many others

20 September 2012 Amittai Aviram | Yale University CS 28

Record-and-Replay Systems

● Instant Replay (1987)
● Recap (1988)
● DejaVu (1998)
● ReVirt (2002)
● Many others

SLOW

20 September 2012 Amittai Aviram | Yale University CS 29

Record-and-Replay Systems

● Instant Replay (1987)
● Recap (1988)
● DejaVu (1998)
● ReVirt (2002)
● Many others

SLOW

- OR -

Require special
hardware

$$$

20 September 2012 Amittai Aviram | Yale University CS 30

Deterministic Schedulers

● DMP

● CoreDet

● Grace

● Dthreads

● Kendo
● Orders lock acquisitions only
● Racy programs remain nondeterministic

● Tern
● Memoizes and re-uses schedules

20 September 2012 Amittai Aviram | Yale University CS 31

Dedeterministic Scheduling

Thread A

Thread B

non-conflicting
accesses

conflicting
accesses

conflicting
accesses

non-conflicting
accesses

...

parallel sequential parallel

20 September 2012 Amittai Aviram | Yale University CS 32

Schedule Dependency

x = 42;
// Thread A:
{
 if (input_is_typical)
 do_a_lot();
 x++;
}
// Thread B:
{
 do_a_little();
 x++;
}

20 September 2012 Amittai Aviram | Yale University CS 33

Schedule Dependency

x = 42;
// Thread A:
{
 if (input_is_typical)
 do_a_lot();
 x++;
}
// Thread B:
{
 do_a_little();
 x++;
}

Thread A

t
1
 ← input_is_typical

jump_zero t
1
 L1

call do_a_lot
...
...
...
...
ret
L1: t

1
 ← x

add t
1
 1

x ← t
1

...

Thread B

call do_a_little
ret
t
2
 ← x

add t
2
 1

x ← t
2

parallel Q
 n

Q
n
+
1

parallel

Q
n
+
2

Q
n
+
1

parallel

20 September 2012 Amittai Aviram | Yale University CS 34

Schedule Dependency

x = 42;
// Thread A:
{
 if (input_is_typical)
 do_a_lot();
 x++;
}
// Thread B:
{
 do_a_little();
 x++;
}

Thread A

t
1
 ← input_is_typical

jump_zero t
1
 L1

call do_a_lot
ret
L1: t

1
 ← x

add t
1
 1

x ← t
1

Thread B

call do_a_little
ret
t
2
 ← x

add t
2
 1

x ← t
2

parallel Q
 n

Q
n
+
1

parallel

Q
n
+
2

Q
n
+
1

serial

20 September 2012 Amittai Aviram | Yale University CS 35

Determinator OS

20 September 2012 Amittai Aviram | Yale University CS 36

Determinator OS

Deterministic
programming model

Limited API

Unconventional OS

20 September 2012 Amittai Aviram | Yale University CS 37

Deterministic OpenMP (DOMP)

● Familiar, expressive OpenMP API

● Includes almost all constructs

● Excludes nondeterministic constructs
● atomic, critical, flush

● Extends OpenMP with generalized reduction

● Enforces deterministic parallel programming model
(like Determinator)

● User library for Linux

● Works with GCC

20 September 2012 Amittai Aviram | Yale University CS 38

Outline

● The Big Picture √
● Background √
● Analysis
● Design and Semantics
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 39

Outline

● The Big Picture √
● Background √
● Analysis
● Design and Semantics
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 40

How easily could real programs
conform to DOMP's deterministic

programming model?

20 September 2012 Amittai Aviram | Yale University CS 41

Method

● Used three parallel benchmark suites
● SPLASH2, NPB-OMP, PARSEC
● Total 35 benchmarks

● Hand-counted instances of synchronization
constructs

● Recorded instances of deterministic constructs
● Classified and recorded instances of

nondeterminstic constructs by their use

20 September 2012 Amittai Aviram | Yale University CS 42

Deterministic Constructs

● Fork/join
● Barrier
● OpenMP work sharing constructs

● Loop
● Master
● (Sections)
● (Task)

20 September 2012 Amittai Aviram | Yale University CS 43

Nondeterministic Constructs

● Mutex lock/unlock
● Condition variable wait/broadcast
● (Semaphore wait/post)
● OpenMP critical
● OpenMP atomic
● (OpenMP flush)

20 September 2012 Amittai Aviram | Yale University CS 44

Use in Idioms

 long ProcessId;

 /* Get unique ProcessId */
 LOCK(Global->CountLock);
 ProcessId = Global->current_id++;
 UNLOCK(Global->CountLock);

barnes (SPLASH2)

Work sharing

20 September 2012 Amittai Aviram | Yale University CS 45

Idioms

● Work sharing
● Reduction
● Pipeline
● Task queue
● Legacy

● Obsolete: Making I/O or heap allocation thread safe

● Nondeterministic
● Load balancing, random simulated interaction …

20 September 2012 Amittai Aviram | Yale University CS 46

Work Sharing

LOOP

..

.

n iterations

Thread
0

Thread
1

Thread
2

Thread
t

0...n/t-1 n/t...2n/t-1
2n/t...3n/t-1

(t-1)n/t...n-1

Task A Thread
0

Task B
Thread

1

Task C Thread
2

Task D
Thread

3

“Data Parallelism”
cf. OpenMP LOOP work
sharing construct

“Task Parallelism”
cf. OpenMP sections and
task work sharing constructs

20 September 2012 Amittai Aviram | Yale University CS 47

Reduction

v
0

v
1

v
2

v
3

v
4

v
5

v
6

v
7X

(((((((((X * V
0
) * V

1
) * V

2
) * V

3
) * V

4
) * V

5
) * V

6
) * V

7
)

*

20 September 2012 Amittai Aviram | Yale University CS 48

Reduction

v
0

v
1

v
2

v
3

v
4

v
5

v
6

v
7X

(((((((((X * V
0
) * V

1
) * V

2
) * V

3
) * V

4
) * V

5
) * V

6
) * V

7
)

*

Pthreads (low-level threading) has no reduction construct.

OpenMP's reduction construct allows only scalar types and
simple operations.

20 September 2012 Amittai Aviram | Yale University CS 49

Pipeline

20 September 2012 Amittai Aviram | Yale University CS 50

Pipeline

20 September 2012 Amittai Aviram | Yale University CS 51

Task Queue

20 September 2012 Amittai Aviram | Yale University CS 52

Idioms

● Work sharing
● Reduction
● Pipeline
● Task queue
● Legacy

● Obsolete: Making I/O or heap allocation thread safe

● Nondeterministic
● Load balancing, random simulated interaction …

DETERMINISTIC IDIOMS

20 September 2012 Amittai Aviram | Yale University CS 53

SPLASH2

o
ce

a
n

w
a

te
r-

sp
a

tia
l

ra
d

ix T
O

T
A

L

fork/join 1 2 1 3 1 5 1 1 1 1 2 1 20 7%
barrier 6 13 40 5 1 15 9 9 4 7 10 7 126 46%
work sharing - - - - - - - - - - - - 0 0%
reduction - - - - - - - - - - - - 0 0%
work sharing 2 1 1 2 5 5 1 1 1 1 2 1 23 8%
reduction 1 1 3 5 - - 7 4 - - - - 21 8%
pipeline - 3 - - - - - - - - - 2 5 2%
task queue - - - 7 - - - - 2 - - - 9 3%
legacy 1 15 - - 6 1 - 1 4 - - - 28 10%

2 8 - 23 2 6 - 2 - - - - 43 16%

b
a

rn
e

s

fm
m

ra
di

o
si

ty

ra
yt

ra
ce

vo
lr

e
n

d

w
at

e
r-

ns
qu

ar
ed

ch
ol

e
sk

y

ff
t

lu

Deterministic
Constructs

Deterministic
Idioms

nondeterministic

20 September 2012 Amittai Aviram | Yale University CS 54

NPB-OMP

BT CG DC EP FT IS LU MG SP UA T
O

T
A

L

fork/join 12 7 1 3 8 7 12 11 13 60 134 25%
barrier - 8 - - - 1 4 - - - 13 2%
work sharing 37 20 - 1 8 11 71 16 38 78 280 52%
reduction - 6 - 1 1 - 3 2 - 4 17 3%
work sharing - - - - - - - - - - 0 0%
reduction 2 - 1 1 - 1 2 - 2 80 89 17%
pipeline - - - - - - 5 - - - 5 1%
task queue - - - - - - - - - - 0 0%
legacy - - - - - - - - - - 0 0%

- - - - - - - - - - 0 0%
538

Deterministic
Constructs

Deterministic
Idioms

nondeterministic

20 September 2012 Amittai Aviram | Yale University CS 55

PARSEC

fe
rr

et

x2
6

4

T
O

T
A

L

fork/join 2 5 2 1 13 7 1 3 1 2 1 5 5 48 23%
barrier - - - - 14 - 3 - - - 1 - 34 52 25%
work sharing 2 5 - - - 21 - - - - - - - 28 14%
reduction - - - - - - - - - - - - - 0 0%
work sharing - - - 2 - - - - - - 1 - - 3 1%
reduction - - - - - 7 - - - - - - - 7 3%
pipeline - - - - - - - - - - - 17 4 21 10%
task queue - - 14 9 - - 2 - - - - - - 25 12%
legacy - - - - - - - - - - - - - 0 0%

- - - - 15 - - - 6 - - - 21 10%

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

fa
ce

si
m

flu
id

a
n

im
a

te

fr
e

q
m

in
e

ra
yt

ra
ce

sw
a

pt
io

ns

vi
p

s

ca
n

n
e

a
l

d
e

d
u

p

st
re

a
m

cl
u

st
er

Deterministic
Constructs

Deterministic
Idioms

nondeterministic

20 September 2012 Amittai Aviram | Yale University CS 56

Aggregate

Fork/Join
17.87%

Barrier
14.79%

Work Sharing Constructs
32.77%

Reduction Constructs
1.81%

Work Sharing Idioms
2.77%

Reduction Idioms
11.70%

Pipeline Idioms
3.30%

Task Queue Idioms
3.62%

Legacy
2.98%

Nondeterministic
8.40%

20 September 2012 Amittai Aviram | Yale University CS 57

OpenMP Benchmarks

All NPB-OMP plus PARSEC blackscholes, bodytrack, and freqmine.

Fork/Join
25.21%

Barrier
2.21%

Work Sharing
52.47%

Simple Reductions
2.90%

Reduction Idioms
16.35%

Pipeline Idioms
0.85%

20 September 2012 Amittai Aviram | Yale University CS 58

Nondeterministic Synchronization

Work Sharing Idioms
8.44%

Reduction Idioms
35.71%

Pipeline Idioms
10.06%

Task Queue Idioms
11.04%

Legacy
9.09%

Nondeterministic
25.65%

20 September 2012 Amittai Aviram | Yale University CS 59

Conclusions

● Deterministic parallel programming model
compatible with many programs

● Reductions can help increase the number

20 September 2012 Amittai Aviram | Yale University CS 60

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 61

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics
● Extended Reduction
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 62

Foundations

● Workspace consistency
● Memory consistency model
● Naturally deterministic synchronization

● Working Copies Determinism
● Programming model
● Based on workspace consistency

20 September 2012 Amittai Aviram | Yale University CS 63

“Parallel Swap” Example

x := 42
y := 33
(x,y) := (y,x)

y := 33

barrier

x := y y := x

x := 42

Thread 0 Thread 1

x = y = 33 x = y = 42

20 September 2012 Amittai Aviram | Yale University CS 64

Memory Consistency Model
Communication Events

● Acquire
● Acquires access to a location in shared memory
● Involves a read

● Release
● Enables access to a location in shared memory for

other threads
● Involves a write

20 September 2012 Amittai Aviram | Yale University CS 65

Workspace Consistency

● Pair each release with a determinate acquire
● Delay visibility of updates until the next

synchronization event

WoDet '11

20 September 2012 Amittai Aviram | Yale University CS 66

WC “Parallel Swap”

rel(1,1) rel(0,1)(0,0) (1,0)

acq(1,0) acq(0,0)(0,1) (1,1)

Thread 0 Thread 1

BARRIER

20 September 2012 Amittai Aviram | Yale University CS 67

WC Fork/Join

rel(1,0)

rel(2,0)

rel(3,0)

acq(0,0)

acq(0,1)

acq(0,2)

acq(1,1)

acq(2,1)

acq(3,1)

rel(0,3)

rel(0,4)

rel(0,5)

(0,0)

(0,1)

(0,2)

(0,3)

(0,5)

(0,4)

(1,0)

(1,1)

(2,0)

(2,1)

(2,0)

(3,0)

(3,1)

Thread 1

Thread 2

Thread 3

start

start

start

exit

exit

exit

compute compute compute compute

Thread 0

FORK

JOIN

20 September 2012 Amittai Aviram | Yale University CS 68

WC Barrier

`

(0,3)

(0,5)

(0,4)

(1,1)

(2,1)

(3,1)

JOIN

(0,0)

(0,1)

(0,2)

(1,0)

(2,0)(2,0)

(3,0)

FORK

Thread 0

acq(1,1)

acq(2,1)

acq(3,1)

rel(1,0)

rel(2,0)

rel(3,0)

Thread 1

rel(0,3)

BARRIER

acq(0,0)

rel(0,4)

acq(0,1)

Thread 2

rel(0,5)

acq(0,2)

Thread 3

20 September 2012 Amittai Aviram | Yale University CS 69

Kahn Process Network

Master

Worker
A

Worker
B

Results

Results

Tasks

Tasks

while (true) {
 send(new_task(), out_1);
 send(next_task(), out_2);
 result = wait(in_1);
 store(result);
 result = wait(in_2);
 store(result);
} out1

out2

in1

in2

in

in

out

out

while(true) {
 task = receive(in);
 result = process(task);
 send(result, out);
}

20 September 2012 Amittai Aviram | Yale University CS 70

Nondeterministic Network
(For Contrast)

Master

Worker
A

Worker
B

Tasks

Ta
sk

s

while(true) {
 result = receive(in);
 store(result);
 send(new_task(), out);
}

while(true) {
 task = receive(in);
 result = process(task);
 send(result, out);
}

mute
x
locks

common channels

out

in
Results

R
es

ul
ts

Tasks

R
esults

out

out

in

in

20 September 2012 Amittai Aviram | Yale University CS 71

Working Copies Determinism
Shared
memory

Thread
A

Thread
B

A's writes B reads “old” values

Join: merge changes
Conflicting writes → ERROR!

Fork: copy state

B's writes

20 September 2012 Amittai Aviram | Yale University CS 72

parent thread
working

copy

20 September 2012 Amittai Aviram | Yale University CS 73

parent thread
working

copy

FORK

20 September 2012 Amittai Aviram | Yale University CS 74

FORK

parent thread
working

copy

working
copy

working
copy

working
copy

reference
copy

hide

copy

copy copy

20 September 2012 Amittai Aviram | Yale University CS 75

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

20 September 2012 Amittai Aviram | Yale University CS 76

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

20 September 2012 Amittai Aviram | Yale University CS 77

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

JOIN

20 September 2012 Amittai Aviram | Yale University CS 78

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

JOIN merge merge merge

20 September 2012 Amittai Aviram | Yale University CS 79

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

JOIN

working
copy

merge merge merge
release

20 September 2012 Amittai Aviram | Yale University CS 80

FORK

parent thread

master thread 1 thread n-1

working
copy

working
copy

working
copy

working
copy

reference
copy

hide

...
copy

copy copy

parent thread

JOIN

working
copy

merge merge merge
release

20 September 2012 Amittai Aviram | Yale University CS 81

DOMP API

● Supports most OpenMP constructs
● Parallel blocks
● Work sharing
● Simple (scalar-type) reductions

● Excludes OpenMP's few nondeterministic
constructs
● atomic, critical, flush

● Extends OpenMP with a generalized reduction

20 September 2012 Amittai Aviram | Yale University CS 82

Example
// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p,

double ** A, double ** B, double ** C) {

for (int i = 0; i < n; i++)
for (int j = 0; j < p; j++) {

C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

SEQUENTIAL

20 September 2012 Amittai Aviram | Yale University CS 83

Example

// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p,

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Creates
new threads,

distributes work

Joins threads
to parent

OpenMP

20 September 2012 Amittai Aviram | Yale University CS 84

Example

// Multiply an n x m matrix A by an m x p matrix B
// to get an n x p matrix C.
void matrixMultiply(int n, int m, int p,

double ** A, double ** B, double ** C) {
#pragma omp parallel for
for (int i = 0; i < n; i++)

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < m; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Creates
new threads,

distributes work +
copies of

shared state

Merges copies
of shared vars into
parent's state and

joins threads
to parent

DOMP

20 September 2012 Amittai Aviram | Yale University CS 85

Extended Reduction

● OpenMP's reduction is limited
● Scalar types (no pointers!)
● Arithmetic, logical, or bitwise operations

● Benchmark programmers used
nondeterministic synchronization to
compensate

20 September 2012 Amittai Aviram | Yale University CS 86

Typical Workaround

 do 155 i = 0, nq - 1
!$omp atomic
 q(i) = q(i) + qq(i)
 155 continue

In NPB-OMP EP (vector sum):

20 September 2012 Amittai Aviram | Yale University CS 87

Typical Workaround

 do 155 i = 0, nq - 1
!$omp atomic
 q(i) = q(i) + qq(i)
 155 continue

In NPB-OMP EP (vector sum):

Nondeterministic programming model

Unpredictable evaluation order

20 September 2012 Amittai Aviram | Yale University CS 88

DOMP Reduction API
● Binary operation op

● Arbitrary, user-defined
● Associative but not necessarily commutative

● Identity object idty
● Defined in contiguous memory

● Reduction variable object var
● Also defined in contiguous memory

● Size in bytes of idty and var

20 September 2012 Amittai Aviram | Yale University CS 89

DOMP Reduction API
● Binary operation op

● Associative but not necessarily commutative

● Identity object idty
● Defined in contiguous memory

● Reduction variable object var
● Also defined in contiguous memory

● Size in bytes of idty and var

void domp_xreduction(void*(*op)(void*,void*), void** var, void* idty, size t size);

20 September 2012 Amittai Aviram | Yale University CS 90

Why the Identity Object?

● DOMP preserves OpenMP's guaranteed
sequential-parallel equivalence semantics

● Each thread runs op on the rhs and idty
● At merge time, each merging thread (“up-

buddy”) runs op on its own and the other
thread's (the “down-buddy's”) version if var

● The master thread runs op on the original var
and the cumulative var from merges.

20 September 2012 Amittai Aviram | Yale University CS 91

DOMP Replacement

 do 155 i = 0, nq - 1
!$omp atomic
 q(i) = q(i) + qq(i)
 155 continue

In NPB-OMP EP (vector sum):

 call xreduction_add(q_ptr, nq)

void xreduction_add_(void ** input, int * nq_val) {
 nq = *nq_val;
 init_idty();
 domp_xreduction(&add_, input, (void *)idty,
 nq * sizeof(double));
}

20 September 2012 Amittai Aviram | Yale University CS 92

Desirable Future Extensions

● Pipeline
● Task Queue or Task Object

20 September 2012 Amittai Aviram | Yale University CS 93

Desirable Future Extensions

● Pipeline
● Task Queue or Task Object

#pragma omp sections pipeline
{ while (more_work()) {
#pragma omp section
 { do_step_a(); }
#pragma omp section
 { do_step_b(); }
/* ... */
#pragma omp section
 { do_step_n(); } } }

20 September 2012 Amittai Aviram | Yale University CS 94

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics √
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 95

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics √
● Implementation
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 96

Stats

● 8 files in libgomp
● ~ 5600 LOC
● Changes in gcc/omp-low.c and *.def files

● To support deterministic simple reductions

20 September 2012 Amittai Aviram | Yale University CS 97

Naive Merge Loop

for each data segment seg in (stack, heap, bss)
 for each byte b in seg
 writer = WRITER_NONE
 for each thread t
 if (seg[t][b]] ≠ reference_copy[b])
 if (writer ≠ WRITER_NONE)
 race condition exception()
 writer = t
seg[MASTER][b] = seg[writer][b]

20 September 2012 Amittai Aviram | Yale University CS 98

Improvements

● Copy on write (page granularity)
● Merge or copy pages only as needed
● Parallel merge (binary tree)
● Thread pool

20 September 2012 Amittai Aviram | Yale University CS 99

Binary Tree Merge

20 September 2012 Amittai Aviram | Yale University CS 100

Binary Tree Merge

20 September 2012 Amittai Aviram | Yale University CS 101

Limitations

● Problem of granularity
● False positive/false negative tradeoff

● Scaling constraints and space inefficiency
● Global bookkeeping data structures
● Globally visible heaps (mapped files)

● No nested parallelism

20 September 2012 Amittai Aviram | Yale University CS 102

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics √
● Implementation √
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 103

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics √
● Implementation √
● Evaluation
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 104

Performance

20 September 2012 Amittai Aviram | Yale University CS 105

Speedup

20 September 2012 Amittai Aviram | Yale University CS 106

Why Is IS So Bad?

Benchmark Max Pages Total Pages
MatMult 24578 24578
Mandelbrot 1 1
BT 4 1911
DC 2 3
EP 3 4
IS 34778 90100
blackscholes 9768 9768
swaptions 677 677
FFT 5 5
LU-cont 7 7
LU-non-cont 7 7

20 September 2012 Amittai Aviram | Yale University CS 107

Converting Nondeterministic Code

Total Module %
MatMult 109 0 0 0
Mandelbrot 105 0 0 0
BT 3589 16 30 1
DC 2809 3 48 2
EP 228 16 30 20
IS 634 0 0 0
blackscholes 359 0 0 0
swaptions 1780 0 0 0
FFT 1504 0 0 0
LU-cont 2484 0 0 0
LU-non-cont 1890 0 0 0

DOMP
Changes

20 September 2012 Amittai Aviram | Yale University CS 108

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics √
● Implementation √
● Evaluation √
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 109

Outline

● The Big Picture √
● Background √
● Analysis √
● Design and Semantics √
● Implementation √
● Evaluation √
● Conclusion

20 September 2012 Amittai Aviram | Yale University CS 110

Future Work

● More flexible design for changing the size of the
thread pool at runtime

● Pipeline construct
● Task queue construct
● Nested parallelism

20 September 2012 Amittai Aviram | Yale University CS 111

In Conclusion …

● Our analysis of benchmarks suggests that an
accessible support framework for a
deterministic parallel programming model may
have wide applicability.

● Our experiments with DOMP suggest that such
accessible deterministic parallel programming
can be efficient and easy to use for many
programs.

20 September 2012 Amittai Aviram | Yale University CS 112

Thank You

● Bryan Ford
● Ramakrishna Gummadi
● Zhong Shao
● Emery Berger
● DeDiS Lab members
● Family and friends
● NSF Grant No. CNS-1017206.

