

Breaking Up the
Transport Logjam

Bryan Ford
Max Planck Institute
for Software Systems
and Yale University

baford@mpi-sws.org

Janardhan Iyengar
Franklin & Marshall

College

jiyengar@fandm.edu

Presentation for TU-Darmstadt – March 12, 2009

Evolutionary Pressures on Transports

● Applications need more flexible abstractions
— many semantic variations [RDP, DCCP, SCTP, SST, ...]

● Networks need new congestion control schemes
— high-speed [Floyd03], wireless links [Lochert07], ...

● Users need better use of available bandwidth
— dispersion [Gustafsson97], multihoming [SCTP],

logistics [Swany05], concurrent multipath [Iyengar06]…

● Operators need administrative control
— Performance Enhancing Proxies [RFC3135],

NATs and Firewalls [RFC3022], traffic shapers

The Transport Layer is
Stuck in an Evolutionary Logjam!

Many Solutions, None Cleanly Deployable

● New transports undeployable
— NATs & firewalls
— chicken & egg: application demand vs kernel support

● New congestion control schemes undeployable
— impassable “TCP-friendliness” barrier
— must work end-to-end, on all network types in path

● Multipath/multiflow enhancements undeployable
— “You want how many flows? Not on my network!”
— Fundamentally “TCP-unfriendly”?

The Problem

Current transports conflate application-oriented
and network-oriented functions...

and where does security and location-independence go?

Transport
Protocol

Endpoint Identification (port numbers)

Transport Abstraction

Congestion
Control

Semantics, Reliability Concerns:
interacts primarily with applications

Performance
Concerns:

interacts with
 traffic shapers,

PEPs

Naming, Routing Concerns:
interacts with firewalls, NATs

SSL/TLS,
“session layer”

IPsec, HIP, shim6

Our Proposal

Break up the Transport according to these functions:

Physical Layer

Data Link Layer

Network Layer

Application Layer

Physical Layer

Data Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Semantic Layer

Transport Layer
Isolation Layer “Information Wall”

Network-Oriented
Functions

Application-Oriented
Functions

Layering Principles

● Network Layer:
core routing needs to be simple, scalable, & stateless

● Endpoint Layer:
edge routing needs richer endpoint info to enforce policy

● Flow Regulation Layer:
performance tuning at technology & admin boundaries

● Isolation Layer:
clean, enforceable separation between apps & network

● Semantic Layer:
E2E reliability & semantics is purely app-driven

Endpoint Layer

edge routing needs
richer endpoint information

to enforce policy
Physical Layer

Data Link Layer

Network Layer

Application Layer

Flow Regulation Layer

Semantic Layer

Isolation Layer

Endpoint Layer

TCP HeaderTCP Header

UDP HeaderUDP Header DCCP HeaderDCCP Header

Endpoint Identification via Ports

Each transport traditionally has a port space

IP HeaderIP Header

Source
Port

Dest
Port

Source
Port

Dest
Port

Source
Port

Dest
Port

Source IP Address
Dest IP Address

TCP
Port Space

UDP
Port Space

DCCP
Port Space

Network Layer
IP Address Space

Addresses Versus Endpoints

IP Address ⇒ identifies host (Inter-Host Routing)

Endpoint ⇒ identifies socket (Intra-Host Routing)
— Traditionally (IP Address, Port Number)
— Port numbers overloaded:

● Well-known ports identify Applications
● Dynamic ports identify Transport Sessions

Why the Network Needs to See Ports

Internet design assumes network needs only IP address
— (e.g., only IP address appears in every fragment)

Assumption has proven wrong!
● Firewalls, traffic shapers need to see them

— to enforce connectivity policies, usage policies

● NATs need to see & transform them
— IPv4: ports increasingly just “16 more IP address bits”
— DHCP port borrowing/sharing [Despres, Bajko, Boucadair]

● All must understand transport headers
— ⇒ only TCP, UDP can get through now

A Layering Solution

Factor endpoints into shared Endpoint Layer

Transport HeaderTransport Header

Transport HeaderTransport Header

IP HeaderIP Header

Source IP Address
Dest IP Address

Endpoint Layer
Port Space

Network Layer
IP Address Space

Endpoint HeaderEndpoint Header

Source
Port

Dest
Port

Transport HeaderTransport Header

Transport HeaderTransport Header

Surprise!

Workable starting point exists — UDP!

IP HeaderIP Header

Source IP Address
Dest IP Address

Endpoint Layer
Port Space

Network Layer
IP Address Space

UDP HeaderUDP Header

Source
Port

Dest
Port

Embrace the Inevitable

It's happening in any case!
● TCP/UDP is “New Waist of the Internet Hourglass”

[Rosenberg 08]
● Every new transport requires UDP encapsulations

— SCTP [Ong 00, Tuexen 07, Denis-Courmont 08]
— DCCP [Phelan 08]

● And a lot of non-transports do too
— IPSEC [RFC 3947/3948], Mobile IP [RFC 3519],

Teredo [RFC 4380], …

...but the new model also has technical benefits...

Practical Benefits

Can now evolve separately:
● Transport functions:

— New transports get through firewalls, NATs, etc.
— Easily deploy new user-space transports,

interoperable with kernel transports
— Application controls negotiation among transports

● Endpoint functions:
— Better cooperation with NATs [UPnP, NAT-PMP, ...]
— identity/locator split, port/service names [Touch06],

security and authentication info ...?

Kernel/User Transport
Non-Interoperability

Network Protocol

Kernel-space
Transport

Application

Network Protocol

User-space
Transport

UDP

Application

K
er

ne
l

U
se

r

K
er

ne
l

U
se

r

Host A Host B

User-space transports are easy to deploy, but
can't talk to kernel implementations of same transport!

(without special privileges, raw sockets, etc.)

Kernel/User Transport
Interoperability

Network Protocol

Kernel-space
Transport

Application

Network Protocol

User-space
Transport

Application

K
er

ne
l

U
se

r

K
er

ne
l

U
se

r

Endpoint ProtocolEndpoint Protocol

Host A Host B

Endpoint layer provides full interoperability,
user-space transports require no special privileges

Transport Negotiation

Many applications support multiple transports,
but can't negotiate them efficiently

Host A

“Cautious Negotiation”

Host B Host A Host B

“Shotgun Negotiation”

“TCP or UDP?”

“UDP!”

“Hello!”

“Hello?”

“Hello?”UDP

TCPTCP

UDP

“Hello?”

UDP“Hello!”

TCPRST

“Zero-RTT” Transport Negotiation

When application controls its Endpoint Layer ports,
it can combine transport negotiation with setup

Host A

Transport Negotiation “Meta-SYN”

T1 SYN T2 SYN T3 SYN

T2 SYN/ACK

Host B

B chooses
Transport 2

Why the Network Will Always
Need to See Endpoint Info

Imperfect world
+ Administratively diverse network
+ Existence of attackers
= Need for Border Control

Expecting middleboxes to enforce network policy
based only on IP address

is like expecting national border guards to ask only
what cities you're traveling to/from

Further Endpoint Layer Evolution

“Next-Generation Endpoint Layer” needs to:
● Remain backward-compatible with UDP

— Use same port space, fall back on UDP transparently

● Extend endpoints with more policy-relevant info
— Port names [Touch 06], user names, service names,

network customer accounts, ...

● Proactively advertise endpoints [Woodyatt-ALD]

— Enable cleaner solutions to “NAT signaling” mess?
[UPnP, NAT-PMP, MIDCOM, NSIS, …]

● Likely design inspiration: [TRIAD, NUTSS]

Flow Layer

performance tuning required
at technology &

administrative boundaries
Physical Layer

Data Link Layer

Network Layer

Application Layer

Semantic Layer

Isolation Layer

Endpoint Layer

Flow Regulation Layer

Traditional “Flow Regulation”

Transports include end-to-end congestion control
— regulates flow transmission rate to network capacity

But one E2E path may cross many...
— different network technologies

● Wired LAN, WAN, WiFi, Cellular, AdHoc, Satellite, …
● Each needs different, specialized CC algorithms!

— different administrative domains
● Each cares about CC algorithm in use!

Can't tune performance, fairness in one domain
w/o affecting other domains, E2E semantics [RFC3515]

A Layering Solution

Factor flow regulation into underlying Flow Layer

Semantic LayerSemantic Layer

Network LayerNetwork Layer

Endpoint LayerEndpoint Layer

Flow LayerFlow Layer

Transport Semantics, Reliability

Flow Performance Regulation

Endpoint Naming

Main Practical Benefit

Can split E2E flow into separate CC segments
— Specialize CC algorithm to network technology
— Specialize CC algorithm within admin domain

… without interfering with E2E transport semantics!

Endpoint

Flow

Host A Host B

Network

Semantic

Application

Endpoint

Flow

Network

Semantic

Application

Endpoint

Flow

Network

Endpoint

Flow

Network

Flow Middlebox Flow Middlebox

Segment 2
Satellite

Segment 1
WiFi LAN

Segment 3
Internet Core

Ad Hoc
Wireless
Network

Wired
Internet

Mobile
Wireless

Link

Example Scenarios

(1) Last-mile proxies for wireless/mobile links

Flow
MidB

Flow
MidB

Host Host

Mobility-Aware
Congestion Control

[M-TCP, ELFN, ...]
TCP-friendly Congestion Control

[Reno, TFRC, ...]

Ad Hoc Wireless
Congestion Control

[WTCP, ATCP, ...]

Simulation: Download over Lossy Link

Simulation: Upload over Lossy Link

LANLAN

Example Scenarios

(2) Lossy Satellite or Long-Distance Wireless Links

Host Host

TCP-friendly CC
[Reno, TFRC, ...]

Flow
MidB

TCP-friendly CC
[Reno, TFRC, ...]

Specialized/High-Performance CC
[HS-TCP, Scalable TCP, BIC-TCP, ...]

Flow
MidB

LANLAN
Host Host

Flow
MidB

Flow
MidB

Simulation: Transfer over Satellite Link

Site 2 LAN

Example Scenarios

(3) Inter-Site WAN Links in Corporate Networks

Site 1 LAN
Host Host

Flow
MidB

Flow
MidB

TCP-friendly or
Locally Configured
Congestion Control

Explicit Congestion Control
[XCP, manually configured max rate, ...]

Reserved Bandwidth
WAN Link

TCP-friendly or
Locally Configured
Congestion Control

Example Scenarios

(4) Delay-Sensitive Use of DSL/Cable Links

Low-Delay
Congestion Control

TCP-friendly
Congestion Control

100Mbps
20ms

ADSL link
Up: 384Kbps,10ms
Dn: 1.5Mbps,10ms

10Mbps
10ms

100Mbps
20ms

Cross-traffic
access links:

100Mbps, 25ms

Cross-traffic
source/sink

Router1 Router2

Server

Client

Gateway

Simulation: DSL Upload – Bandwidth

Simulation: DSL Upload – Latency

End-to-End Congestion Control,
One Segment at a Time

Net

Source
Host

Flow
Middlebox

Router Router Router Router Target
Host

App

Net

App

Congestion Control Loop 1 Congestion Control Loop 2Transmit
Buffer

Receive
Buffer

Feedback
(ACKs, etc.)

Feedback
(ACKs, etc.)

(1)(1) Link Link
BottleneckBottleneck

(3) (3) “Packets “Packets
Dropped!”Dropped!”

(4)(4) “Slow “Slow
Down!”Down!”

(5)(5) Queue Queue
FillsFills

(6) (6) “Packets “Packets
Dropped!”Dropped!”

(7)(7) “Slow “Slow
Down!”Down!”

(2)(2) Queue Queue
FillsFills

Other Practical Benefits (1/2)

Incrementally deploy performance enhancements
— multihoming [RFC 4960], multipath [Lee 01],

dispersion [Gustafsson 97], aggregation [Seshan 97], ...

… without affecting E2E transport semantics!

Endpoint Protocol

Host A Host B

Transport Protocol

Application Protocol

Endpoint Protocol

Transport Protocol

Application Protocol

Endpoint Protocol

Flow Middlebox

end-to-end multipath

Endpoint Protocol

Flow Protocol Flow Protocol
Flow Protocol Flow Protocol

per-segment multipath

Flow Middlebox

Other Practical Benefits (2/2)

Endpoint Protocol

Host A2

Transport Protocol

Application Protocol
Endpoint Protocol

Flow Middlebox

Endpoint Protocol

Flow Protocol

Flow Protocol Flow Protocol

Flow Middlebox

Endpoint Protocol

Host A1

Transport Protocol

Application Protocol

Flow Protocol

Endpoint Protocol

Host B2

Transport Protocol

Application Protocol

Flow Protocol

Endpoint Protocol

Host B1

Transport Protocol

Application Protocol

Flow Protocol

Aggregate
Flow

Shared Access Network
or Wide-Area Link

● Can aggregate flows cleanly within domains for
— Efficient traffic measurement, management
— Fairness at “macro-flow” granularity

“Fairness Enhancing Middleboxes”

Give customers equal shares of upstream BW
independent of # connections per customer

ISP
Network

Home
Network

Host

Flow Aggregation
Middlebox

Upstream Providers

CPE

Host

ISP-controlled CPE
with flow aggregation

Home
Network

Host

CPE

Host

Per-bundle CC,
1:1 BW sharingFTP User BitTorrent User

Developing the Flow Layer

● Several “starting points” exist:
— Congestion Manager [Balakrishnan99]
— DCCP [Kohler06]

(just stop thinking of it as a “transport”)
— SST Channel Protocol [Ford07]

● Continuing work areas:
— Support for flow middleboxes, path segmenting
— Interfaces between (new) higher & lower layers

Will We Always Need a Flow Layer?

Not if everyone can agree on & universally deploy
one sufficiently powerful congestion control scheme

— ECN? Re-ECN? XCP? RCP? …

Even if possible,
we'll need a flow layer to get there!

Isolation Layer

need clean, enforceable
separation

between apps & network
Physical Layer

Data Link Layer

Network Layer

Application Layer

Semantic Layer

Endpoint Layer

Flow Regulation Layer

Isolation Layer

Purpose

Isolate the E2E application flow from the network:
— By separating host identity from network location [HIP, UIA]
— By authenticating and encrypting E2E communication [IPsec]

Physical Layer

Data Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Semantic Layer

Isolation Layer “Information Wall”

Network-Oriented
Functions

Application-Oriented
Functions

Mobility Example

Mobile host starts file transfer at time 0,
IP address changes at 10 sec.

Architectural Novelty

What's new about this?

Nothing about the isolation mechanisms themselves...
only there's finally a clean place to put them!
● Above network-oriented functions:

doesn't interfere with firewalls, NATs, PEPs
● Below application-oriented functions:

still transparent to applications like IPsec,
doesn't require rewriting for each transport [DTLS]
& integrating into each application

Semantic Layer

E2E reliability & semantics
is purely app-driven

Physical Layer

Data Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Isolation Layer

Semantic Layer

Semantic Layer

Contains “what's left”:
● Semantic abstractions that apps care about

— Datagrams, streams, multi-streams, …

● Reliability mechanisms
— “Hard” acknowledgment, retransmission

● App-driven buffer/performance control
— Receiver-directed flow control
— Stream prioritization
— ...

Putting It All
Together

Physical Layer

Data Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Isolation Layer

Semantic Layer

So how to build it?

Working “Clean-Slate” Prototype

Based on Structured Stream Transport
(SIGCOMM '07)

● TCP semantics
● Fast “stream fork”
● Fine-grained streams

(e.g., per-transaction)
● Datagrams as streams

Image
Image

Web Browser: Top-level Stream

Multimedia Plug-in: Control Stream

Video Codec Stream

Audio Codec Stream

Video Frames (Ephemeral Streams)

Audio Frames (Ephemeral Streams)

Web Page Download: HTML

Image
Image

Prototype Structure

Stream Protocol

Channel Protocol
(authentication, encryption)

Negotiation Protocol
(key exchange)

UDP

Application Protocol

Semantic
Layer

Reliable Byte Streams

End-to-End Channels

UDP Datagrams

Channel Protocol
(congestion control)

Negotiation Protocol

Segmented Channels

IP

IP Packets

Isolation
Layer

Flow
Regulation

Layer

Network
Layer

Endpoint
Layer

Application
Layer

Alternative Structure,
Reusing Existing Protocols

Link

Application

Flow Regulation

Semantic

Isolation

Endpoint

Routing

TCP, SCTP

HIP, IPsec

DCCP

UDP (+ NAT-PMP, ALD, ...)

IPv4, IPv6

Per-Packet Header Overhead,
Estimated Code Size Complexity

Current SST Prototype vs Equivalent Linux Protocols
— C++ vs C, prototype vs mature – not a fair comparison!

Incremental Deployment

● XXX need more explicit story here

The Transport Logjam Revisited

● New transports undeployable
— Can traverse NATs & firewalls
— Can deploy interoperably in kernel or user space
— Apps can negotiate efficiently among transports

● New congestion control schemes undeployable
— Can specialize to different network types
— Can deploy/manage within administrative domains

● Multipath/multiflow enhancements undeployable
— Can deploy/manage within administrative domains

Only the Beginning...
Promising architecture (we think), but
lots of details to work out

— Functionality within each layer
— Interfaces between each layer
— Application-visible API changes

Big, open-ended design space
— We are starting to explore, but

would love to collaborate
— We are interested in learning about

other relevent applications/scenarios

Conclusion

Transport evolution
is stuck!

To unstick, need to separate its functions:
— Endpoint naming/routing into separate Endpoint Layer
— Flow regulation into separate Flow Layer
— Place E2E security functions in Isolation Layer
— Place semantic abstractions in Transport Layer

Complexity

● More layers
=> increase

● Puts necessary hacks into framework
=> decrease

● What's the balance?

What about the e2e principle?

● Flow layer implements in-network mechanisms that
focus on communication performance
— Precisely the role for which the e2e principle

justifies in-network mechanisms

● All state in the flow middleboxes is performance-
related soft state

● Transport layer retains state related to reliability
— End-to-end fate-sharing is thus preserved

● Transport layer is still the first end-to-end layer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

