

Square Pegs in a Round Pipe:
Wire-Compatible Unordered Delivery

In TCP and TLS

Michael F. Nowlan2

Nabin Tiwari1
Jana Iyengar1

Syed Obaid Amin12

Bryan Ford2

1Franklin & Marshall 2Yale University
College

Project webpage: http://dedis.cs.yale.edu/2009/tng

Once upon a time, long long ago
● TCP was the Internet workhorse

— reliable, ordered, connection-oriented, bytestream
— flow control (receiver throttle)

● UDP was a transport NOOP
— Ok … it demuxed. Big Deal.

● Applications were largely happy
— TCP generally sufficed (telnet, FTP, Email …)
— UDP was used for simple messaging (DNS, TFTP)

Over the next several moons
● TCP continued to mature

— end-to-end congestion control (network throttle)
— ECN (and AQM)
— NEW!! MPTCP for multiple net interfaces !!

● UDP remained a NOOP

● Modern apps found services insufficient
— realtime audio / video communication
— multimedia streaming
— web

New transports built in response ...

● SCTP (RFC 4960)
— multistreaming, message boundaries, multihoming,

partial reliability, congestion control

● DCCP (RFC 4340)
— Unreliable, congestion-controlled

● SST, POC
● BXXP?

… but the Internet remained loyal!

● TCP and/or UDP get through most middleboxes
— Only TCP gets through all middleboxes
— ...often only to port 80 (HTTP) or port 443 (HTTPS)!

● New & unknown transports rarely get through
— SCTP and DCCP not supported by middleboxes
— Make it almost impossible to deploy new transports

How deep does this loyalty run?

● Network Address Translators (NATs)
— Cheap and ubiquitous, entrenched in the network

● Firewalls
— Rules based on TCP/UDP port numbers; often DPI

● Performance Enhancing Proxies (PEPs)
— Transparently improve TCP (not UDP!) performance

Applications, in the meanwhile ...
● Build their own abstractions atop TCP and UDP

— multiple TCP connections for multistreaming,
congestion control and retransmissions on UDP

● Abstracting on UDP
— eventually tends towards TCP over UDP
— can interact poorly with UDP's service model

● Abstracting on TCP
— adds buffering and latency
— can interact poorly with TCP's mechanisms

What have we done so far?
● “NATs are evil. We won't care about them.”
● “It will all change with IPv6.”
● “Don't design around middleboxes,

 that will only encourage them!”
● “Wait, wait... we'll accept middleboxes,

but we'll specify
how they ought to behave!”

● “Why build a new transport?? It won't get
deployed anyways. Overlay.”

Denial

Anger

Bargaining

Depression

The final stage*: Acceptance

● Design assumptions for new end-to-end services:
— Middleboxes are here to stay
— Design should not require changes to middleboxes

● Consequence:
— New end-to-end services must use protocols that

appear as legacy protocols on the wire.

*Kübler-Ross model: Five stages of grief

The Minion Suite

A “packet packhorse” for deploying new transports
● Uses legacy protocols …

— TCP, TLS, UDP
● … as a substrate...

— turn legacy protocols into minions offering
unordered datagram service

● … for building new services that apps want
— multistreaming, message boundaries, unordered

delivery, app-defined congestion control
— (may be extended to: stream-level receiver-side flow

control, multipath, partial reliability)

Outline

● Minion: a packet packhorse for new transports
— Carry new transport services over Internet's rough terrain

● uCOBS: unordered delivery in TCP
— Making datagram service look like a TCP stream

● uTLS: unordered delivery in SSL/TLS
— Making datagrams indistinguishable from HTTPS

● Impact on “real applications”

What's in the Minion Suite?

● Break up the functions of the legacy transport layer
— “Breaking Up the Transport Logjam”, HotNets '08

● Use legacy protocols as compatible building blocks
● We'll focus here on uCOBS/uTCP (and summarize uTLS)

OS API

Minion API:
unordered
datagram

delivery Minion Protocol Suite

uCOBS uTLS shim

UDP

shim

DCCP

Application

higher application-level
transports (optional)

TCP or uTCP

Optional Minion extensions to TCP

uTCP (unordered TCP)

We introduce 2 new TCP socket options in Linux:
● SO_UNORDERED_RCV

— kernel delivers incoming data immd
— both in-order and out-of-order data
— also delivers TCP sequence number (- ISN) with data

● SO_UNORDERED_SND:
— Userspace library specifies priority with every write() call
— Message placed in a priority queue in socket sendbuffer
— Untransmitted data only! Transmitted data in linear queue

Delivery in Standard TCP

101
CumAck = 101

TCP Stack
(delivered)

read()
Application

application receive buffer

1.
In-Order
Arrival

Delivery in Standard TCP

301
CumAck = 201

(delivered)

read()

301
Out-of-Order
Queue

delivery
delayed

2.
Out-of-Order
Arrival

Delivery in Standard TCP

201
CumAck = 201

(delivered)

read()

301
Out-of-Order
Queue

3.
Gap-Filling
Arrival

(delayed data delivered)

Delivery in uTCP

101
CumAck = 101

TCP Stack
(delivered)

read()
Application

application fragment buffer

1.
In-Order
Arrival

101

(application-level
 stream reassembly)

sequence
number

Delivery in uTCP

301
CumAck = 201

(delivered)

read()

301
Out-of-Order
Queue

2.
Out-of-Order
Arrival

301

application fragment buffer (with hole)

out-of-order
delivery

sequence
number

Delivery in uTCP

201
CumAck = 201

(delivered)

read()

301
Out-of-Order
Queue

3.
Gap-Filling
Arrival

201

application fragment buffer (hole filled)

sequence
number

uCOBS: Simple Datagrams on uTCP

● Bytestream has no inherent structure
— middleboxes can re-segment TCP segments
— need a message framing mechanism …
— … to detect msgs in arbitrary stream fragments

● Self-delimiting framing with COBS
— zero added to both ends of an app message
— COBS encoding eliminates zeros in orig data
— guaranteed max bit-overhead: 0.4%

(6 bytes for 1448-byte msg)

uCOBS: Simple Datagrams on uTCP

uCOBS Sender
● COBS-encoded messages sent through uTCP
● with app-specified priority

uCOBS Receiver
● manages out-of-order data received from uTCP
● extracts, decodes, delivers messages anywhere in

received data bytes

uTLS (Summary)
● uTLS protects end-to-end signaling and data

— appears as SSL/TLS on the wire, but
— provides out-of-order datagram service

● Makes stream indistinguishable from, e.g., HTTPS
— even to middleboxes that inspect all app payloads!
— only encrypted content affected

● Technical Challenges:
— TLS records not encoded for out-of-order decoding
— Ciphersuites chain encryption state across records
— MACs use implicit record counter, hard to recover

Minion Implementation
● uTCP in Linux 2.6.32 kernel

— Added socket options to SOCK_STREAM:
SO_UNORDERED_SND, SO_UNORDERED_RCV

— Modified 565 (4.6%) lines of code

● Userspace library for rest of uCOBS and uTLS
— reassembles fragmented streams, extracts message,

decodes, and delivers to app
— library → can ship as part of apps
— uCOBS: 732 lines of code
— uTLS: in OpenSSL, 586 (1.9%) lines of code modified

App messages with
TCP (TLV encoding) vs. uCOBS

Time received at app (seconds)
0 0.2 0.4 0.6 0.80

20

40

60

A
pp

 M
es

sa
ge

 S
eq

ue
nc

e
N

um
be

r (
11

95
-b

yt
e

m
sg

s)

TCP

uCOBS

App with message priorities

(every 100th message is high priority; 60ms RTT; 0.5% loss)

Why build Minion?
● Instant Karma:

— Interactive streaming, Video Conferencing
— Better Web browing (parallel HTTP requests)
— Minion tunnels instead of TCP tunnels (SSL VPNs)

● Medium-term Karma:
— Minion's services available at design time for new apps

● Reincarnative Karma (if you believe in it):
— Next-gen transport abstraction
— New Internet transports built and deployed on Minion

Impact on “Real Applications”

Example: Voice-over-IP (VoIP)
● Voice/videoconferencing is delay-sensitive

— Long round-trip delays perceptible, frustrate users

● Modern VoIP codecs tolerate individual losses
— Interpolate over 1 or 2 lost packets

● But are highly sensitive to burst losses
— Can't interpolate when many packets lost/delayed!

VoIP application: observed delay

(3Mbps bandwidth, 60ms RTT; 4 TCP flows in background)

Impact on “Real Applications”

Example: Web
● Independent objects in web pages
● TCP: parallelism vs. throughput tradeoff

● Multistreaming with Minion
— ordered streams on top of uCOBS, 1 per object
— sender breaks data into chunks, adds stream

header, sends over uCOBS
— no HoL blocking at receiver across streams

Web Browsing
Trace-driven, over a
network path with
1.5Mbps capacity
and 60ms RTT

In Conclusion
● TCP, TLS work on the Internet

— workhorses of the Internet
— increasingly being used as substrates

● “It's the latency, stupid”
— Stuart Cheshire, May 1996

● We can fit square pegs (packets)
through a round pipe (TCP, TLS)
— eliminates in-order delivery delays
— most mods deployable with apps
— turn workhorses into packhorses!

Continuum of configuration tradeoffs

uTLS

(u)TCPUDPDCCP (u)TCP

uCOBSshimshim

Conservative:
maximize compatibility

with legacy network

Liberal:
benefit from new
OS-level transports

true unordered delivery across full spectrum

Minion encourages adoption of new
transports

● Minion allows new services to be created and
deployed in a legacy environment.
— Does not prevent native deployment of new protocols.
— Encourages adoption of new protocols by

middleboxes and OSes through use of new services
by apps before middlebox/OS support is available.

● WIP: Ends need to detect protocol-graph

App-Observed Delay Distribution

