Square Pegs in a Round Pipe:
Wire-Compatible Unordered Delivery
In TCP and TLS

Michael F. Nowlan?
Nabin Tiwari’
Jana lyengar’

Syed Obaid Amin'

Bryan Ford?

'Franklin & Marshall “Yale University
College

Project webpage: http.//dedis.cs.yale.edu/2009/tng

Once upon a time, long long ago

e TCP was the Internet workhorse

- reliable, ordered, connection-oriented, bytestream
- flow control (receiver throttle)

« UDP was a transport NOOP
- Ok ... it demuxed. Big Deal.

* Applications were largely happy

- TCP generally sufficed (telnet, FTP, Email ...)
- UDP was used for simple messaging (DNS, TFTP)

Over the next several moons

e TCP continued to mature

- end-to-end congestion control (network throttle)
- ECN (and AQM)
- NEW!Il' MPTCP for multiple net interfaces !

e UDP remained a NOOP

 Modern apps found services insufficient

— realtime audio / video communication
- multimedia streaming
- web

New transports built in response ...

. SCTP (RFC 4960)

- multistreaming, message boundaries, multihoming,
partial reliability, congestion control

. DCCP (RFC 4340)

- Unreliable, congestion-controlled

« SST, POC
« BXXP?

... but the Internet remained loyal!

 TCP and/or UDP get through most middleboxes

- Only TCP gets through all middleboxes
- ...often only to port 80 (HTTP) or port 443 (HTTPS)!

 New & unknown transports rarely get through

- SCTP and DCCP not supported by middleboxes
- Make it almost impossible to deploy new transports

How deep does this loyalty run?

HughesNe! w

« Network Address Translators (NATS) e —

- Cheap and ubiquitous, entrenched in the network
* Firewalls

- Rules based on TCP/UDP port numbers; often DPI
» Performance Enhancing Proxies (PEPSs)

- Transparently improve TCP (not UDP!) performance

Applications, in the meanwhile ...

 Build their own abstractions atop TCP and UDP

- multiple TCP connections for multistreaming,
congestion control and retransmissions on UDP

* Abstracting on UDP

- eventually tends towards TCP over UDP
- can interact poorly with UDP's service model

* Abstracting on TCP

- adds buffering and latency
- can interact poorly with TCP's mechanisms

What have we done so far?

 “NATs are evil. We won't care about them.”
. “It will all change with IPv6.” <= Denial

* "Don't design around middleboxes,
that will only encourage them!”

<€ Anger

e “Wait, walit... we'll accept middleboxes,
but we'll specify <¢+— Bargaining
how they ought to behave!”

* "Why build a new transport?? It won't get
deployed anyways. Overlay.” == Depression

The final stage™. Acceptance

» Design assumptions for new end-to-end services:

- Middleboxes are here to stay
— Design should not require changes to middleboxes

« Consequence:

- New end-to-end services must use protocols that
appear as legacy protocols on the wire.

*Kibler-Ross model: Five stages of grief

The Minion Suite

A “packet packhorse” for deploying new transports

 Uses legacy protocols ...
- TCP, TLS, UDP
e ... @s a substrate...

- turn legacy protocols into minions offering
unordered datagram service

... for building new services that apps want

- multistreaming, message boundaries, unordered
delivery, app-defined congestion control

- (may be extended to: stream-level receiver-side flow
control, multipath, partial reliability)

Outline

Minion: a packet packhorse for new transports

- Carry new transport services over Internet's rough terrain

uCOBS: unordered delivery in TCP

- Making datagram service look like a TCP stream

uTLS: unordered delivery in SSL/TLS
- Making datagrams indistinguishable from HTTPS

Impact on “real applications”

What's in the Minion Suite?

Application
higher application-level
Minion API: transports (optional)

unordered —m

datagram Minion Protocol Suite

delivery ‘ ‘
uCOBS uTLS Sshim shim
TCP or uTCP UDP ~ DCCP

b 4

Optional Minion extensions to TCP

* Break up the functions of the legacy transport layer

- “Breaking Up the Transport Logjam”, HotNets '08
* Use legacy protocols as compatible building blocks

 We'll focus here on uCOBS/uTCP (and summarize uTLS)

uTCP (unordered TCP)

We introduce 2 new TCP socket options in Linux:
« SO UNORDERED RCV

- kernel delivers incoming data immd
- both in-order and out-of-order data
- also delivers TCP sequence number (- ISN) with data

« SO_UNORDERED_SND:

- Userspace library specifies priority with every write() call
- Message placed in a priority queue in socket sendbuffer
- Untransmitted data only! Transmitted data in linear queue

Delivery in Standard TCP

application receive buffer

S |

Application
1 ready TCP Stack
C —— tac
In-Order ..(P’..‘?.’.’.‘.(?C‘?ﬂ?..

Arrival CumAck = 101 1
101 | |

Delivery in Standard TCP

3 delivery
delayed
2. i readd
Out-of-Order ~ * (delivered) 301
Arrival CumAck = 201 + Out-of-Order

301 | | Queue

Delivery in Standard TCP

(delayed data delivered)

3 —— [QO(() —
Gap-Filing % (delivered) 301
Arrival CumAck = 201 1 Out-of-Order

501 Queue

Delivery in uTCP

application fragment buffer

g (application-level
Stream reassembly)

sequence 101

number ™
oad() Application
1. i, TCP Stack
In-Order ...(.d..?.’.’.‘.’.?.r.‘?.‘.’f?..
Arrival CumAck = 101 1

101

2.
Out-of-Order
Arrival

301

Delivery in uTCP

application fragment buffer (with hole)

3 .

sequence |301 out-of-order
number ® delivery
read()
(delivered) 301
CumAck = 201 Out-of-Order
Queue

3.
Gap-Filling
Arrival

201

Delivery in uTCP

application fragment buffer (hole filled)

3

sequence
number ® 201
read()
......... (del/vered) —
CumAck = 201 1 Out-of-Order
Queue

uCOBS: Simple Datagrams on uTCP

 Bytestream has no inherent structure

- middleboxes can re-segment TCP segments
- need a message framing mechanism ...
- ... to detect msgs in arbitrary stream fragments

» Self-delimiting framing with COBS

- zero added to both ends of an app message
- COBS encoding eliminates zeros in orig data

- guaranteed max bit-overhead: 0.4%
(6 bytes for 1448-byte msqg)

uCOBS: Simple Datagrams on uTCP

uCOBS Sender
» COBS-encoded messages sent through uTCP
» with app-specified priority

uCOBS Receiver
* manages out-of-order data received from uTCP

» extracts, decodes, delivers messages anywhere in
received data bytes

uTLS (Summary)

 UTLS protects end-to-end signaling and data

- appears as SSL/TLS on the wire, but
- provides out-of-order datagram service
 Makes stream indistinguishable from, e.g., HTTPS

- even to middleboxes that inspect all app payloads!
- only encrypted content affected
* Technical Challenges:

- TLS records not encoded for out-of-order decoding
- Ciphersuites chain encryption state across records
- MACs use implicit record counter, hard to recover

Minion Implementation

e UTCP in Linux 2.6.32 kernel

- Added socket options to SOCK_STREAM:
SO UNORDERED SND, SO UNORDERED RCV

- Modified 565 (4.6%) lines of code

« Userspace library for rest of uCOBS and uTLS

- reassembles fragmented streams, extracts message,
decodes, and delivers to app

- library — can ship as part of apps
- uCOBS: 732 lines of code
- UuTLS: in OpenSSL, 586 (1.9%) lines of code modified

App messages with
TCP (TLV encoding) vs. uCOBS

cC | : 2R |
o £ 5 i ;
2 O i ' |
O 40 g .
VRN
53 .
C — G . ?
%:’ _ _________________ i_‘..'_gé ________ ‘\ R S
=3 20 1 TCP
35 |
< Z |
0 R
0.4 0.6 0.8

Time received at app (seconds)

lorities

App with message pr

; 0.5% loss)

60ms R

(every 100" message is high priority;

......

mrraad
.....

.....

iy e
::::::::::::

o
llllllll

'
apsaaann A ALEES

WAy . .
B \\\\\\\\\\\\\\\M\U\Wﬂ-\.m‘.ﬁd"ﬁ 222e

'I
u‘.\..u.h%\\‘_w\NMM.P T =

o DB
OO = RO
m T —m = qﬂﬁﬁﬁﬁﬁm.wmﬁ\ \\\N.hbll
Qs = o S 3t T A
5852
3030
S>>
—_— = e
S o= o
L0
A 50 e
2525
O =" 0O ="s
- L

O O O O 0O 0O 0O 9O O 9
©O O ©O © 0O © o © S
O O O K © I ¥ ® N +~
1

(sw) Aejeag pu3-01-pu3 painsea-ddy

4000 6000 8000
Messages in Received Order at Receiver

2000

0

Why build Minion?

 Instant Karma:

- Interactive streaming, Video Conferencing
- Better Web browing (parallel HTTP requests)
— Minion tunnels instead of TCP tunnels (SSL VPNs)

e Medium-term Karma:

- Minion's services available at design time for new apps

* Reincarnative Karma (if you believe in it):

- Next-gen transport abstraction
- New Internet transports built and deployed on Minion

Impact on "Real Applications”

Example: Voice-over-IP (VoIP)
 \oice/videoconferencing is delay-sensitive

- Long round-trip delays perceptible, frustrate users

 Modern VolP codecs tolerate individual losses
- Interpolate over 1 or 2 lost packets
» But are highly sensitive to burst losses

- Can't interpolate when many packets lost/delayed!

Fraction of Frames

VolP application: observed delay

(3Mbps bandwidth, 60ms RTT; 4 TCP flows in background)

0.8
0.6
0.4
0.2

e 200ms jitter buffer _
R R uCOBS — -
1 VO TS S N TCP

S R N B -

0 10 20 30 40 50

Loss Burst Length (Application Frames)

Impact on "Real Applications”

Example: Web
* Independent objects in web pages
o TCP: parallelism vs. throughput tradeoff

* Multistreaming with Minion

- ordered streams on top of uCOBS, 1 per object

- sender breaks data into chunks, adds stream
header, sends over uCOBS

- no HolL blocking at receiver across streams

Total Page Load Time (ms)

Average Time to First Byte (ms)

Web Browsing

800 |
700 |
600 |
500 |
400 |
300 |
200 hrssitn

1-2 requests per page 3-8 requests per page 9+ requests per page

|

HTTP/1.1 over |
HTTP/1.0 over

TCP
uTCP

500 |
450
400 t
350
300
250 |
200

150 _I ':'3-:'1‘:‘:;.‘ %% -

1

1

1 il

1

1 1

2K 4K

16K 64K

4K 16K 64K
Total Page Size (KB)

16K 32K 64K 128K

Trace-driven, over a
network path with
1.5Mbps capacity

and 60ms RTT

In Conclusion

e TCP, TLS work on the Internet

— workhorses of the Internet
- Increasingly being used as substrates

« “It's the latency, stupid” B
- Stuart Cheshire, May 1996 ra

 We can fit square pegs (packets)
through a round pipe (TCP, TLS)

- eliminates in-order delivery delays
- most mods deployable with apps
- turn workhorses into packhorses!

Continuum of configuration tradeoffs

< true unordered delivery across full spectrum >
shim shim uCOBS | uTLS
| DCCP | | UDP | | (u)TCP | | (u)TCP |

e
benefit from new maximize compatibility

OS-level transports with legacy network

Minion encourages adoption of new
transports

e Minion allows new services to be created and
deployed in a legacy environment.

- Does not prevent native deployment of new protocols.

- Encourages adoption of new protocols by
middleboxes and OSes through use of new services
by apps before middlebox/OS support is available.

 WIP: Ends need to detect protocol-graph
supported by endpoints and by middleboxes

N

- Negotiation Service (HotNets '09)
- "Happy Eyeballs™ on steroids

App-Observed Delay Distribution

0.95 }

09 b

085 bl

0.8 b o

Fraction of App Messages (CDF)

o7sb

0.7

O 100 200 300 400 500 600 700
End-to-End App Message Delay (ms)

