
Unordered Delivery in TLS-Encrypted TCP Connections

690 Report

Department of Computer Science

Yale University

Michael F. Nowlan

Advisor: Bryan Ford

ABSTRACT

TCP and UDP offer markedly different transport semantics.

However, increasingly, applications robust to the unreliabil-

ity of UDP choose TCP because it is more likely to success-

fully navigate today’s Internet full of meddlesome middle-

boxes (ie. firewalls and NATs). The Transport Next Gener-

ation (Tng) project attempts to alleviate the logjam caused

by this shifting of the Internet’s narrow-waist towards TCP.

In this paper, we present Unordered TLS (uTLS), the sec-

ond of Tng’s two new proposed transport modes. uTLS

and Unordered TCP (uTCP) together enable out-of-order

delivery of application data while maintaining strict wire-

compatibility with TLS and TCP. We explore the require-

ments and implementation of uTLS, and its ability to "go

between" UDP and TCP by emulating both stream and data-

gram behavior. We achieve less than a 3.7% performance

increase compared to standard TLS with an even smaller

increase in code. With promising early results, we discuss

how further development can demonstrate the effectiveness

of uTLS in real-time applications, such as Voice-Over IP.

1. INTRODUCTION

TCP’s reliable, in-order delivery service [22], designed

for application convenience, comes at a fundamental cost of

delaying data delivery to the application. When the network

loses one data segment, the receiving TCP must buffer and

delay all segments within at least the next round-trip time

(RTT), until the sender reacts and successfully retransmits

the lost segment. Many applications, such as audio/video

conferencing and VPN tunneling, tolerate one packet’s out-

right loss more gracefully than the delay of a full RTT worth

of packets, making these applications ill-suited to TCP.

Recognizing the needs of delay-sensitive applications, all

standardized transports since TCP [14, 17, 21, 26], and var-

ious experimental transports [10, 23], offer out-of-order de-

livery. Yet factors such as TCP’s inertia, and the proliferation

of firewalls and NATs, have impeded the deployment of new

transports [11, 16, 20]. As a result, modern delay-sensitive

applications, such as the Skype telephony system [2] and

Microsoft’s DirectAccess VPN [4], regularly use TCP de-

spite its performance drawbacks, in order to maximize their

chance of functioning at all over adverse network paths.

The Transport Next Generation (Tng) project aims to alle-

viate the tension in choosing between reachability with delay

and out-of-order data delivery. To do this, we observe that

it is usually not the network but rather the receiving TCP

stack that withholds out-of-order segments from the appli-

cation, introducing TCP’s delivery delays. To work around

this, the Tng project adds an extension to TCP’s API that

enables out-of-order delivery within TCP and TLS. These

modified versions of the protocols are identical on-the-wire

as the originals, but simply enable applications to request

out-of-order data. Unordered TCP (uTCP) and Unordered

TLS (uTLS) merely expose information to the application

that TCP stacks traditionally hide.

In this paper, we explore the design and implementation

of uTLS, and how it complements uTCP to fulfill the larger

goals of the Tng project.

As deep packet inspection middleboxes have proliferated,

unfortunately, only TCP streams containing HTTP [9] or

HTTPS [18] (TLS-over-TCP) now traverse many paths reli-

ably [16]. To surmount this further compatibility challenge,

we offer uTLS, a version of TLS [7] modified to support out-

of-order record delivery. uTLS does not modify the TLS

wire protocol seen by the network. Instead, the uTLS re-

ceiver scans TCP stream fragments for TLS records in their

standard encoding, then authenticates, decrypts, and delivers

them to the application out-of-order. Achieving this com-

patibility presents additional challenges—false positives in

the scanning process, cryptographic interdependencies be-

tween records, and the record numbers TLS uses in MAC

verification—but uTLS works around these challenges.

Experiments testing the performance of uTCP and uTLS

show that these approaches successfully offer the delay ben-

efits of out-of-order delivery on typical Internet paths.

This paper’s primary contributions are: (a) a modifica-

tion to TLS that enables out-of-order record delivery without

modifying the standard TLS wire format; and (b) experimen-

tal evidence that a uTLS prototype implementation incurs

minor overhead in terms of code and resources.

1

2. MOTIVATION

The design of the Internet encourages growth by mini-

mizing the requirements for communication between hosts.

The Internet Protocol (IP) specifies how to identify and reach

hosts uniquely on the Internet. Below this layer, the phys-

ical implementation varies, with options such as wireless,

ethernet and satellite. Above IP, there are multiple trans-

ports such as TCP, UDP and SCTP. Each of these physical

and transport layer options has its own benefits and draw-

backs. This tradeoff enables the Internet to support rich and

diverse applications that demand different semantics. With

IP as the “narrow waist”, or only requirement, of network

applications, this fosters innovation and growth by allowing

applications to define functionality and behavior as needed.

2.1 Shifting of the Narrow Waist

With the evolution of the Internet and web browsing, TCP’s

reliable and in-order data delivery semantics likely gave it

an advantage over other transports, such as UDP. With the

World Wide Web and its use of HTTP, much Internet traffic

flows over the HTTP-on-TCP-on-IP layering.

The increased importance of the Internet and its applica-

tions to society have forced network operators to support as

much Internet traffic as possible. Given that so many appli-

cations use TCP-on-IP, an easy way to begin supporting the

end-user is to ensure the network handles TCP traffic cor-

rectly. Supporting other transports is a distant second prior-

ity. As a result, non-TCP transports are susceptible to un-

reachability in some network paths.

A second consequence of the penetration and growing im-

portance of the Internet is security. The potential devas-

tation resulting from network vulnerabilities prompts net-

work operators to block any communication that seems sus-

picious. Given the popularity of TCP described above, it

is easy to understand that “suspicious” really means “any-

thing but TCP”. Firewalls and Network Address Translators

(NATs) by default may block traffic using other transports,

funneling Internet applications into the well-known and un-

derstood behavior of TCP-on-IP, or HTTP-on-TCP-on-IP.

As a result of its familiarity and widespread support, TCP

remains the only transport that ensures connectivity.

2.2 TCP/TLS Tunnels

This shifting towards TCP-on-IP and TLS-on-TCP-on-IP

has consequences for applications that wish to use other trans-

ports. Rather than using other transports directly on IP, ap-

plications use TCP tunnels to communicate, encapsulating

application semantics or eliminating them altogether.

Emerging studies in the industry show that the shifting of

the narrow waist has real-world impact.

• Media Streaming/Conferencing: Real-time applications

such as VoIP and media streaming, which traditionally

used UDP for transport, increasingly use TCP instead.

Most commercial media streaming traffic now flows atop

TCP—over 70% in a recent study [12]. While video-

on-demand services can smooth over TCP’s artificial de-

lays using jitter buffers a few seconds long, “face-to-face”

VoIP and videoconferencing applications have no such

luxury since long round-trip delays are perceptible and

frustrating to users. Nevertheless, teleconferencing appli-

cations such as Skype often choose TCP over UDP [2].

• New Transport Services: Recognizing that evolutionary

developments have moved the de facto “narrow waist” of

the Internet upward to include at least TCP and perhaps

even HTTP [11, 16, 20], new transport services increas-

ingly choose to tunnel atop TCP or HTTP to avoid be-

ing blocked by middleboxes. Recent examples include

the W3C’s WebSocket API [27] and Google’s SPDY [1].

• Virtual Private Networks (VPNs): To provide reliable

remote access to enterprise environments, VPNs are in-

creasingly moving from “raw” IPSEC tunnels [13] toward

TLS-over-TCP tunnels, as inMicrosoft’s DirectAccess [4].

Since both the tunnel itself and the tunneled traffic often

use TCP, these VPNs produce deep recursive layer cakes,

e.g., “TCP-on-IPv6-on-HTTP-on-TLS-on-TCP-on-IPv4,”

often yielding unexpected performance side-effects [24].

3. TRANSPORT NEXT GENERATION

The Transport Next Generation (Tng) project attempts to

alleviate some of the pressure caused when applications are

forced to use TCP, though they desire more UDP-like se-

mantics. The Tng project modifies TCP and TLS to directly

support a datagram delivery service to the application. Ad-

ditionally, Tng proposes breaking the Transport Layer into

multiple layers, each handling a specific function such as

naming, negotiation and flow regulation.

3.1 Unordered TCP (uTCP)

To coax out-of-order data from the receiving TCP stack,

we’ve added a kernel modification to the Linux kernel that

enables an application to request an “unordered” socket op-

tion. With this option enabled, the kernel still delivers con-

tiguous data. However, the first byte delivered may be many

bytes beyond the cumulative ACK point, if there is a gap of

data that has not yet been received. Our semantics ensure

that all application data is delivered in order at least once.

With this modification, an application will receive data that

would otherwise be delayed for a lost TCP segment. Fur-

thermore, because the underlying transport is still TCP, the

application is guaranteed to receive every byte at least once,

due to TCP’s reliability.

We call this kernel modification Unordered TCP, or uTCP.

Figure 1 shows the architecture of the receiving TCP Stack

with our kernel modification.

3.1.1 Datagram Semantics and Offering More

To fully emulate datagram delivery, as in UDP, uTCP needs

to encode message boundaries within the data. Applications

using UDP expect message boundaries to be encoded at the

2

Figure 1: Proposed Tng architecture, including uTLS,

uCOBS and uTCP, versus traditional TCP/IP.

time of writing, preserved through transmission in the net-

work, and enforced on delivery to the receiving application.

In contrast, TCP’s stream-oriented semantics allow for net-

work re-segmentation of the data because the receiving host

will always deliver in-order. Because the network may re-

segment data during transmission, the receiver can not guar-

antee that reads occur on the same boundaries as writes.

Applications using datagram semantics will likely use their

own message sequence numbers, if necessary. Although we

could abstract away the organization of such information

into uTCP, we take the minimalist approach, and offer no

more than what UDP semantics state. As a result, we must

offer an encoding scheme that preserves message boundaries

within the TCP stream so that the receiving stack can know

when it has a complete message.

3.1.2 COBS encoding

Any encoding scheme may be used to mark boundaries,

and we choose Consistent Overhead Byte Stuffing (COBS)

[3]. COBS works by removing a special delimeter byte from

a data stream and using this delimeter to mark the message

boundaries. By bookending each message with the delime-

ter, the receiver can scan a contiguous byte stream and detect

the presence of complete messages. When used in conjunc-

tion with uTCP, uCOBS offers full datagram delivery emu-

lation to the application while maintaining TCP wire format.

3.2 uTCP in Action

Figure 2 illustrates the behavior of uTCP compared to

TCP as viewed by the application in a simple bulk transfer

experiment. We use this experiment solely to demonstrate

the advantage of uTCP over TCP: that the application con-

tinues to receive new data despite dropped segments.

In summary, the Tng project aims to jumpstart Internet

growth in the transport layer. It does this by making all trans-

ports wire-compatible with TCP and TLS. By ferrying traffic

over these two protocols, the chance of a failed connection

decreases. In order to support all transports within TCP and

TLS, we proposed a kernel modification for out-of-order de-

livery. An application wishing to use out-of-order data de-

livery has two choices: it can use the uCOBS for a full data-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500

B
y
te

s
 R

e
c
e
iv

e
d
 B

y
 A

p
p
 (

K
B

)

Time (ms)

uTCP
TCP

Figure 2: uTCP delivers subsequent data after a lost

packet, rather than delaying it as in TCP.

gram delivery emulation, or it can use the underlying socket

directly (ie. only uTCP), and order the data itself. uTLS, the

focus of this paper, uses the second approach.

4. GOING UNORDERED IN TLS

While uCOBS offers out-of-order record delivery wire-

compatible up to the TCP level, middleboxes often inspect

the content of TCP streams as well, via Deep Packet Inspec-

tion and even application payload manipulation. An increas-

ingly de facto rule is that anything not encrypted in a TCP

or UDP stream is “fair game” for middleboxes. An appli-

cation’s only way to ensure “end-to-end” communication in

practice, therefore, is via end-to-end encryption and authen-

tication. But network-layer mechanisms such as IPsec [13]

face the same deployment challenges as new secure trans-

ports [10], and remain confined to the niche of corporate

VPNs. Even VPNs are shifting from IPsec toward HTTPS

tunnels [4], the only form of end-to-end encrypted connec-

tion almost universally supported on today’s Internet. A net-

work administrator or ISP might disable nearly any other

port while claiming to offer “Internet access,” but would be

hard-pressed to disable SSL/TLS connections to port 443,

the Web’s foundation for now-crucial E-Commerce.

We could layer TLS directly atop uCOBS, but TLS nor-

mally decrypts and delivers data only in-order and thus would

eliminate uTCP’s benefit. More appropriate would be layer-

ing DTLS [19], the datagram-oriented version of TLS, atop

uCOBS, but the resulting COBS-encoded, DTLS-encrypted

records would have a wire format radically different from

TLS over TCP. This new encoding would be unfamiliar and

likely suspicious to middleboxes, and may be unusable on

the crucial port 443. The goal of uTLS, therefore, is to

3

coax out-of-order delivery from the existing TCP-oriented

TLS wire format, producing an encrypted out-of-order deliv-

ery channel essentially indistinguishable from standard TLS

connections (other than via “side-channels” such as packet

length and timing, which we do not address here).

4.1 Typical TLS

TLS [7] already breaks its communication into records,

encrypts and authenticates each record, and prepends a ver-

sion/type/length header for transmission on the underlying

TCP stream. Of these steps, encryption and authentication

require specific inputs. Encryption requires the data, cryp-

tographic key and 16-byte Initialization Vector (IV) in order

to produce cipher text. This cipher text is then hashed with

a sequence, or record, number producing a Message Au-

thentication Check (MAC) value. The IV contributes solely

to cryptographic security and the sequence number ensures

only reliability of the message content. This is an important

distinction as we delve further into the challenges of uTLS.

TLS supports a variety of ciphers, but we focus our work

on a commonly-used cipher mode called Cipher Block Chain-

ing (CBC) [8]. CBC mode has the property that the IV

for a given record equals the encrypted data of the previous

record. For example, after encrypting the first record but be-

fore sending it, the ciphersuite stores the data for use as the

IV for the following record. This process repeats for each

record forming a dependency “chain” throughout the entire

communication stream.

As mentioned, the sequence number does not provide cryp-

tographic security, but rather, ensures solely the integrity of

the data after decryption. As a result, the sequence number

is often a simple record counter, monotonically increasing

and starting at one.

4.2 Challenges to uTLS

Given the nature of TLS described above, there are sev-

eral challenges to enabling out-of-order delivery. We first

present the challenges, and explain our solutions in the next

section. The first challenge is identifying record boundaries.

Each record begins with the special 5-byte TLS header, but

the receiving host cannot simply scan for these headers and

attempt decryption. Re-segmentation and the potential for

encrypted content to match a header can cause “false head-

ers”.

The second challenge deals with decryption. Recall that

in CBC mode, decryption requires the previous record for

the IV, and if decrypting out-of-order, there is a gap in the

byte stream for which data has not yet arrived. This means

that the previous record’s encrypted content is not available.

In CBC mode there appears no way to decrypt records out-

of-order due to the dependency chain between records.

The third challenge is similar to the second, but deals

with the sequence number. The MAC calculation will not

succeed without the correct sequence number. When de-

livering records out-of-order, there is a gap of contiguous

data. It is difficult to know exactly how many records fill

that gap. Without knowing the logical record number of a

given record, the MAC calculation may fail.

The last challenge deals with failed decryption and au-

thentication. In normal TLS, a failure terminates the connec-

tion, but this is because a failure in-order implies corruption

somewhere in the system. Similarly, uTLS should termi-

nate the connection for an authentication failure in-order. It

should not terminate the connection for an out-of-order fail-

ure to allow for possible incorrect sequence numbers. This

does not violate security because corrupted data will eventu-

ally be tried in-order and will fail. Figure 3 illustrates these

challenges.

5. uTLS: ADDRESSING CHALLENGES

We now present our solutions to the challenges posed by

out-of-order delivery in TLS connections.

5.1 Identifying Record Boundaries

Each TLS record has a 5-byte header that marks the start

of a potential record. Before attempting decryption on the

record, however, the receiver compares the length field of the

header with the length of contiguous bytes succeeding the

header in the received stream. If the specified length exceeds

the available bytes, the record is skipped, and the receiver

continues looking for potential records. In this way, the re-

ceiver avoids attempting decryption until the entire record

has arrived. Furthermore, by checking the header-specified

length against the TLSmaximum andminimum record lengths,

the receiver can rule out some false headers and prevent a

failed decryption altogether. Not all failed decryptions can

be avoided, however. It is possible for encrypted data to

match a TLS header. These cases require a soft failure (Chal-

lenge 4).

5.2 Decryption without IV

The dependency chain of CBCmode prevents out-of-order

decryption in the presence of a lost record because decrypt-

ing a given record requires the previous one. To surmount

this problem, we prepend a record’s IV to that record prior

to transmission. The receiver then sets the IV of the cipher

to the bytes preceeding the record header before decrypting.

This change to the protocol eliminates the need for the pre-

vious record to arrive before the current record. Rather, the

current record needs only the bytes representing its IV to

successfully decrypt.

We note that this modification is a change to the wire

format. Furthermore, it increases the bandwidth overhead.

However, this change is only required for backwards com-

patibility to TLS version 1.0 and below [5]. TLS version 1.1

and above [6], explicitly sends the IV on the wire. Therefore,

unordered decryption without the IV is only a challenge in

TLS version 1.0 and below. Lastly, because TLS version

1.1 transmits each record’s IV explicitly, uTLS incurs zero

bandwidth overhead going forward.

4

Figure 3: Challenges to uTLS.

It is important to note that TLS’s security stems from the

collective randomness and unpredictability of the cryptographic

key and IV pairing. Explicitly sending the IV before a record

header incurs no loss of security, though proving this is not

the focus of this work.

5.3 MAC without Sequence Number

The TLS MAC provides message fidelity, but does not

provide cryptographic security. As such, the sequence num-

ber that is used to authenticate decrypted records is not a

secret; it increments by one for each record. We leverage

this knowledge to predict sequence numbers for out-of-order

records. Given a gap in the receive-queue of data that has not

arrived yet, we can guess at the number of records contained

in the gap. We then add this number to the last known suc-

cessful sequence number used (ie. the record containing the

cumulative ACK point). With a static record size, we predict

with high accuracy the sequence number for a given out-of-

order record.

Even with varying record sizes, we can try multiple se-

quence numbers in succession, provided a successful de-

cryption using the key and IV. If the sequence number pre-

diction fails to successfully authenticate a record out-of-order,

the record is stored and will eventually be tried in-order. If

this in-order MAC check fails, the connection is terminated

due to corruption.

5.4 Soft Failure for Unordered Data

Because TLS only delivers data in-order, a decryption or

authentication failure implies corruption. In uTLS, our out-

of-order authentication may fail due to an incorrect sequence

number prediction. uTLS’s decryption almost always suc-

ceeds, due to the checking of the header-specified length.

False headers can cause a decryption failure, though we did

not observe this in our experiments.

Because of their differences, uTLS needs the ability to fail

“softly” when out-of-order records fail. Addressing this is-

sue is straightforward; we made a simple change to the TLS

code on failed out-of-order records: scan the receive queue

for other potential records, and, if no records are available,

return zero to the application.

6. PERFORMANCE AND EVALUATION

We now present performance results of our uTLS imple-

mentation. While we believe further optimization of our

uTLS code is possible, these results demonstrate the plaus-

ability of our approach with regards to CPU utilization and

network bandwidth overhead.

6.1 Implementation Complexity

Our preliminary prototype of uTLS was adapted from the

OpenSSL [15] open source implemention of the TLS pro-

tocol version 1.0. The uTCP kernel modification added 295

lines (2.3%) of kernel code, while our uTLS implementation

contributed an additional 557 lines (1.8%) of user code to

OpenSSL’s libssl library, but does not modify the libcrypto

library.

Our prototype focuses on minimizing the CPU utiliza-

tion of the uTLS code, by reading from the out-of-order

socket only when the application requests new data; rather

than reading continuously from the socket and storing data

in user space. This comes at a fundamental cost, however, to

application performance in some scenarios because it may

unnecessarily delay data that could be delivered in-order but

arrives after some logically “later” data in the stream. We

discuss this tradeoff in detail in Section 7.1.

Lastly, the performance of our prototype increased signif-

icantly by storing the locations of potential headers in the

receive queue. This prevents unnecessarily re-checking for

potential headers a second time through the queue.

5

6.2 Bandwidth and CPU Costs

As uTLS is a part of the larger Tng framework, we present

the performance results for all of Tng’s application-level record

encoding and out-of-order delivery protocols, as implemented

by our uTCP, uCOBS and uTLS prototype libraries. We

emphasize that these user-space libraries represent only two

of the many ways applications might utilize uTCP, and that

these libraries were written with little emphasis on tuning or

optimization.

Figure 4 compares the CPU processing cost and application-

perceived throughput for COBS and TLS encoding/decoding,

atop both standard TCP streams and uTCP streams (uCOBS,

uTLS), at several loss rates. The experiment is a 30MB bulk

transfer over a path with 60ms RTT. Figure 4(a) shows CPU

time consumption, the lighter part of each bar representing

user time and the darker part representing kernel time. Fig-

ure 4(b) shows transfer bandwidth achieved. All results are

normalized to the results of the same experiment over “raw”

TCP, with no application-level record encoding.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.5 1.0 2.0 5.0

N
o

rm
a

liz
e

d
 P

ro
c
e

s
s
in

g
 C

o
s
t

(x
 T

C
P

)

Loss Rate (%)

TCP
COBS

uCOBS
TLS

uTLS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.5 1.0 2.0 5.0

N
o

rm
a

liz
e

d
 P

ro
c
e

s
s
in

g
 C

o
s
t

(x
 T

C
P

)

Loss Rate (%)

TCP
COBS

uCOBS
TLS

uTLS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1.0 2.0 5.0

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

(x
 T

C
P

)

Loss Rate (%)

TCP
COBS

uCOBS
TLS

uTLS

Figure 4: CPU and Throughput costs of using an appli-

cation with TCP, COBS, uCOBS, TLS, and uTLS.

Unsurprisingly, kernel-level CPU consumption is barely

affected by most of the application-level encodings. COBS

encoding incurs some application-level processing cost, and

TLS incurs more due to its encryption and authentication.

Our uTLS prototype shows slightly higher utilization than

TLS due to the necessity to scan for records and filter out

false positives via the cryptographic MAC.

As shown in the throughput graph in Figure 4, the band-

width penalty of uCOBS encoding (0.4% worst-case plus

two marker bytes per application record) is essentially im-

perceptible. uTLS encoding incurs slightly more bandwidth

overhead due to its addition of IVs to each record versus

TLS version 1.0. However, as of TLS version 1.1, this cost

is entirely attributable to the standard TLS encoding and is

not affected by uTLS.

7. DISCUSSION AND FUTUREWORK

We discuss limitations of our current uTLS prototype, and

how these issues might be addressed. Further, we discuss

improvements and future work.

7.1 uTLS Performance Tradeoff

With the minimal overhead introduced by uTLS, we are

confident that many real-time applications will benefit from

unordered delivery. One such application is Voice-Over IP

(VoIP). In this section, we discuss a homegrown application

meant to demonstrate the effects of out-of-order delivery for

a real-time application.

This application simulates a VoIP communication session

by transmitting encoded audio frames at specified intervals,

and playing them back at the receiving application based on

the time received and the “jitter” buffer time window. For

real-time applications, such as VoIP, the application’s “per-

ceived” performance, or quality, depends greatly on the la-

tency. Because they are in-order protocols, TCP and TLS are

theoretically ill-suited for such applications because a single

dropped packet delays the delivery of all subsequent packets

until successful retransmission. This “bursty loss” effect is

in sharp contrast to an out-of-order protocol which does not

delay any packets other than those that are dropped. Thus,

with uTLS we expect to see shorter burst lengths of delayed

packets, on average, compared to TLS.

We use the Speex Audio Codec [25] to encode and de-

code voice audio frames. We experimented with many dif-

ferent conditions, but Figure 5 demonstrates the current per-

formance tradeoff uTLS faces. This experiment uses a 60ms

RTT, 2.0% artificial network loss, and two jitter buffer sizes

of 50ms and 120ms. Figure 5 shows a CDF of codec-perceived

burst lengths of audio frames that miss their playback point

at the application.

As expected, for the smaller jitter buffer of 50ms, roughly

0.87% x RTT, the average burst length for uTLS is less than

that of TLS. However, as the jitter buffer size increases, we

see TLS outperform uTLS. This is due to a limitation in

the way the current uTLS prototype reads from the kernel’s

socket.

The uTLS prototype reads raw, encrypted data from the

socket and stores it in-order in a linked list. In order to min-

imize CPU overhead for traversing and managing this list,

data is only read from the socket when there are no com-

plete records in the list. Once a packet is dropped, other

later packets may be read from the socket into the linked

list. Subsequent reads by the application will be serviced by

the records in the linked list, even if the retransmitted packet

6

 0.2

 0.4

 0.6

 0.8

 1

Bursty Losses - 2% Loss

50ms jitter buffer
(= 0.84 x RTT)

 0.2

 0.4

 0.6

 0.8

 0 5 10 15 20 25 30

F
ra

c
ti
o

n
 o

f
F

ra
m

e
s
 (

C
D

F
)

Loss Burst Size (App Frames)

120ms jitter buffer
(= 2.0 x RTT)

uTLS
TLS

Figure 5: A comparison of uTLS and TLS for two jitter

buffer sizes.

exists in the kernel’s socket. This behavior has a tendency to

“lock out” packets that are initially dropped by the network.

This performance tradeoff limits only the effectiveness of

our current prototype and is not an inherent fault of uTLS.

We discuss future work to address this, and other challenges

in the next subsection.

7.2 Future Work

Future work should investigate the use of uTCP and uTLS

in real-time applications. In particular, the example VoIP ap-

plication described above demonstrates that significant im-

provements are possible in the protoype implementation. Fu-

ture work should find the optimal tradeoff between minimiz-

ing CPU overhead cost and favoring the delivery of in-order

data.

Some potential applications for a uTLS and TLS compar-

ison include VoIP and Video conferencing and chat applica-

tions, multi-streaming web applications, such as searching

and shopping. Multi-streaming applications stand to gain

significantly because out-of-order data on a single, multi-

plexed link may actually be in-order data for one of the con-

stituent “logical” streams. This may enable, for example,

parts of a webpage to display more quickly, improving the

perceived latency of the connection.

8. CONCLUSION

All of the Internet transports designed since TCP, despite

their diverse characteristics, embody a common recognition

that many important applications can benefit from out-of-

order delivery. None of these out-of-order transports except

UDP, however, has surmounted the high barriers to entry that

today’s Internet effectively places on new protocols layered

atop IP. Even applications such as VoIP that traditionally run

on UDP are shifting to TCP tunneling for network compati-

bility reasons. Instead of ignoring or fighting this trend, we

have demonstrated a small suite of protocols that can offer

applications out-of-order delivery while maintaining strict

wire-compatibility with TCP and even TLS.

In this paper, we presented uTLS and showed its feasabil-

ity in terms of bandwidth overhead and CPU utilization. As

a bonus, the source code changes required to the common

TLS implementation are less than 3.7%. Future work will

address the tradeoff between low utilization and per-packet

latency. With uTLS and uTCP, we demonstrate the ability

to offer datagram semantics, including out-of-order delivery,

with the reachability guarantee of TLS and TCP.

9. REFERENCES
[1] SPDY: An Experimental Protocol For a Faster Web.

http://www.chromium.org/spdy/spdy-whitepaper.

[2] S. A. Baset and H. Schulzrinne. An analysis of the Skype

peer-to-peer Internet telephony protocol. In INFOCOM, Apr. 2006.

[3] S. Cheshire and M. Baker. Consistent Overhead Byte Stuffing. In

ACM SIGCOMM, Sept. 1997.

[4] J. Davies. DirectAccess and the thin edge network. Microsoft

TechNet Magazine, May 2009.

[5] T. Dierks and C. Allen. The TLS protocol version 1.0, Jan. 1999.

RFC 2246.

[6] T. Dierks and E. Rescorla. The transport layer security (TLS)

protocol version 1.1, Apr. 2006. RFC 4346.

[7] T. Dierks and E. Rescorla. The transport layer security (TLS)

protocol version 1.2, Aug. 2008. RFC 5246.

[8] M. Dworkin. Recommendation for block cipher modes of operation,

Dec. 2001. NIST Special Publication 800-38A.

[9] R. Fielding et al. Hypertext transfer protocol — HTTP/1.1, June

1999. RFC 2616.

[10] B. Ford. Structured streams: a new transport abstraction. In

SIGCOMM, Aug. 2007.

[11] B. Ford and J. Iyengar. Breaking up the transport logjam. In

HotNets-VII, Oct. 2008.

[12] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang.

Delving into Internet Streaming Media Delivery: a Quality and

Resource Utilization Perspective. In IMC, Oct. 2006.

[13] S. Kent and K. Seo. Security architecture for the Internet protocol,

Dec. 2005. RFC 4301.

[14] E. Kohler, M. Handley, and S. Floyd. Datagram congestion control

protocol (DCCP), Mar. 2006. RFC 4340.

[15] The OpenSSL project. http://www.openssl.org/.

[16] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the

future Internet. In HotNets-IX, Oct. 2010.

[17] J. Postel. User datagram protocol, Aug. 1980. RFC 768.

[18] E. Rescorla. HTTP over TLS, May 2000. RFC 2818.

[19] E. Rescorla and N. Modadugu. Datagram transport layer security,

Apr. 2006. RFC 4347.

[20] J. Rosenberg. UDP and TCP as the new waist of the Internet

hourglass, Feb. 2008. Internet-Draft (Work in Progress).

[21] R. Stewart, ed. Stream control transmission protocol, Sept. 2007.

RFC 4960.

[22] Transmission control protocol, Sept. 1981. RFC 793.

[23] W. W. Terpstra, C. Leng, M. Lehn, and A. P. Buchmann.

Channel-based unidirectional stream protocol (CUSP). In INFOCOM

Mini Conference, Mar. 2010.

[24] O. Titz. Why TCP over TCP is a bad idea, Apr. 2001. http:

//sites.inka.de/bigred/devel/tcp-tcp.html.

[25] J.-M. Valin. The speex codec manual version 1.2 beta 3, Dec. 2007.

http://www.speex.org/.

[26] D. Velten, R. Hinden, and J. Sax. Reliable data protocol, July 1984.

RFC 908.

[27] W3C. The websocket api (draft), 2011.

http://dev.w3.org/html5/websockets/.

7

