
Decentralizing Authorities into
Scalable Strongest-Link
Cothorities

Ewa Syta, Iulia Tamas, Dylan Visher, David Wolinsky – Yale University
Bryan Ford, Linus Gasser, Nicolas Gailly – Swiss Federal Institute of Technology (EPFL)

Stanford Univerisity – October 9, 2015

We depend on many authorities
Conceptually simple but security-critical services

• Logging, Time-stamping Services,
Digital Notaries

• Naming Authorites (ICANN logo)

• Certificate Authorities

• Randomness Authorities (e.g., Lotteries)

• Software Update Services

But are authorities trustworthy?

But are authorities trustworthy?

But are authorities trustworthy?

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

Why do we have authorities?

Alice

Check E-mail

Send Text-Message

Download
software update

Bob

Why do we have authorities?

Alice
Bob

?
What is:
● Gmail's SSL public key?
● Bob's IM public key?
● Latest version of App?

Respect my
Authoritah!

When authorities go bad

Alice

Respect my
Authoritah!

Bob

Fake

Fake Bob

Fake

Key Problem #1

Authorities (and their private keys) are powerful

● Bad CA → MITM any web site

● Bad keyserver → impersonate any user

● Bad update server → instant backdoor

Attractive targets for hackers, criminals,
spy agencies

Key Problem #2
There are many authorities:
e.g., hundreds of CAs trusted by web browsers
● Any CA can issue cert for any domain name

Hacker (or spy agency) needs only one CA key
● Weakest-link security
● @#$% happens

– DigiNotar,
Comodo,
CNNIC/MCS

Challenge: Decentralize Authorities

Split important authority functions across
multiple participants (preferably independent)

● So authority isn't compromised unless
multiple participants compromised

From weakest-link to strongest-link security

Decentralizing Trust

We have many technical tools already

● “Anytrust”: 1-of-k servers honest, all k live

● Byzantine replication: 2/3 honest, 2/3 live

● Threshold cryptography, multisignatures

Example: Tor directory authority (8 servers)

Limitations of Trust-Splitting

Trust-splitting is rare, challenging to implement,
usually scales only to small groups.

● Is splitting across 5-10 servers enough?

● Are they truly independent and diverse?

● Who chooses the composition and how?

Are we convinced there is no adversary powerful
enough to hack 5 of 8 directory servers?

Grand Challenge: Trust Scaling

Large-scale collective authorities: “Cothorities”

● Split trust over hundreds, thousands of parties

● Correct unless large fraction compromised

E.g.: replace hundreds of CAs with one CA with
authority split across hundreds of parties

● Diversity of servers, operators, organizations,
countries, interests, software, hardware, …

● Make adding participants cheap, efficient

● Ensure security scales with size and sensitivity

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• CoSi: Scalable Collective Multisignatures

• Implementation and Preliminary Experimental Results

• Applications: Secure Logging, Proactive Transparency

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

A First-Step Goal

Generically improve security of any authority,
independent of authority type or semantics

Introducing Witness Cothorities...

Witness Cothorities

“Who watches the watchers?”

Public witnesses!

Enforce two security properties:

● Any signed authoritative statement
has been widely witnessed

● Any signed authoritative statement
conforms to checkable standards

Witnesses

Respect my
Authoritah!

CoSi: Collective Signing

Operation:
● Authority server generates statements
● Witness servers collectively sanity-check

and contribute to authority's signature
● Each statement gets a collective signature:

small, quick and easy for anyone to verify

→ Authority (or key thief) can't sign anything
in secret without many colluding followers

CoSi: Collective Signing

Authority
(leader)

WitnessesWitness
Cothority

“Bob's public key is Y.”

“The time is 3PM.”

“Gmail's public key is X.”

“The latest version of Firefox is Z.”

CoSi Crypto Primitives

Builds on well-known primitives:
• Merkle Trees
• Schnorr Signature and Multisignatures

CoSi builds upon existing primitives but makes it
possible to scale to thousands of nodes
• Using communication trees and aggregation,

as in scalable multicast protocols

Merkle Trees
• Every non-leaf node labeled with the hash of the

labels of its children.
• Efficient verification of items added into the tree
• Authentication path - top hash and siblings hashes

A B C D

E=H(H(A)|H(B))

top hash

H(A) H(B) H(C) H(D)

F=H(H(C)|H(D))

?

G=H(H(E)|H(F))

Schnorr Signature
• Generator g of prime order q group
• Public/private key pair: (K=gk, k)

Signer Verifier

Commitment

Challenge

Response

V=gv

r = (v – kc)

c = H(M|V)

Commitment recovery

Challenge recovery

Decision

V' = grKc

c’ = H(M|V’)

c’ = c ?

Signature on M: (c, r)

= gv-kcgkc = gv = V

V

c

r

Collective Signing

● Goal: collective signing with N signers
– Strawman: everyone produces a signature

– N signers-> N signatures -> N verifications

– Bad if we have thousands of signers

● Better choice: multisignatures

Schnorr Multisignature
• Key pairs: (K1=gk1, k1) and (K2=gk2, k2)

Signer 1 Verifier

Commitment

Challenge

Response

V1=gv1

r1 = (v1 – k1c)

c = H(M|V1)

Commitment recovery

Challenge recovery

Decision

V' = grKc

c’ = H(M|V’)

c’ = c ?

Signature on M: (c, r)

V1

c

r1

c = H(M|V)

V2

r2

Signer 2

r2 = (v2 – k2c)

V2=gv2

c

Signature on M: (c, r1)

K=K1*K2

V=V1*V2

r=r1+r2

Same signature!

Same verification!
Done once!

K3, PK{k3 | K3=gk3}
K3 = K3

CoSi Protocol Setup

Merkle tree containing:

● Public keys Ki
(discrete-log)

● Self-signed Certificates

● Aggregate keys Ki

O(n) one-time verify cost
O(|n'-n|) group change

K4, PK{k4 | K4=gk4}
K4 = K4

K2, PK{k2 | K2=gk2}
K2 = K2K3K4

K1, PK{k1 | K1=gk1}
K1 = K1K2...KN

CoSi Protocol Rounds

1. Announcement Phase

2. Commitment Phase

3. Challenge Phase

4. Response Phase

V3 = gv3,
V3 = V3

CoSi Commit Phase

Merkle tree containing:

● Commits Vi

● Aggregate
commits Vi

Collective challenge c
is root hash of
per-round
Merkle tree

V4 = gv4,
V4 = V4

V2 = gv2,
V2 = V2V3V4

V1 = gv1,
V1 = V1V2...VN

Challenge
c = H()

r3 = v3 - k3c,
r3 = r3

CoSi Response Phase

Compute

● Responses ri

● Aggregate
responses ri

Each (c,ri) forms
valid partial signature

(c,r1) forms
complete
signature r4 = v4 - k4c,

r4 = r4

r2 = v2 - k2c,
r2 = r2+r3+r4

r1 = v1 - k1c,
r1 = r1+r2+...+rN

The Availability Problem

Assume server failures are rare but non-negligible
● Availability loss, DoS vulnerability if not addressed

● But persistently bad servers administratively booted

Two approaches:

● Exceptions – currently implemented, working

● Life Insurance – partially implemented, in-progress

Simple Solution: Exceptions
• If node A fails, remaining nodes create signature
• For a modified collective key: K’= K * K-1A

• Using a modified commitment: V’= V * V-1A

• And modified response: r’= r – rA

• Client gets a signature under K’ along with
exception metadata eA

• eA also lists conditions under which it was issued

• Client accepts only if a quorum of nodes maintained

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• CoSi: Scalable Collective Multisignatures

• Implementation and Preliminary Results

• Applications: Secure Logging, Proactive Transparency

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

Implementation

● Implemented in Go with dedis crypto library
– https://github.com/DeDiS/crypto

● Schnorr multisignatures on Ed25519 curve
– AGL's Go port of DJB's optimized code

● Run experiments on DeterLab
– Up to 8192 virtual CoSi nodes

– Multiplexed atop up 64 physical machines

– Latency: 100ms roundtrip between two servers

https://github.com/DeDiS/crypto

Results: Collective Signing Time

Results: Computation Cost

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• CoSi: Scalable Collective Multisignatures

• Implementation and Preliminary Experimental Results

• Applications: Logging, Proactive Transparency

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

Application: Secure Logging
● Many authorities make “public statements”

● Often recorded in tamper-evident public log
– Hash chains for consistency verification

● But hashes don't address equivocation…

● Or freshness…

record1 record2 record3

Head

record1 record2
record3

record3

Head 1

Head 2

record1 record2 record3

“Head”

Witnessing Public Log Servers
● Witnesses collectively verify log structure,

Leader can't equivocate without being busted

Log Server

Witnesses
Witness

Cothority

record1 record2 record3

each record collectively signed

The Transparency Challenge

Alice

Respect my
Authoritah!

Bob

Fake

Fake Bob

Fake

Current Transparency Solutions

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

● Perspectives
● Certificate Transparency
● AKI, ARPKI
● CONIKS

!!
!!

!!

!!

Freetopia

An Important Assumption

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

Takes time,
may compromise
alice's privacy

Assumes Alice can,
and is willing to,
gossip with
witnesses

Tyrannia Freetopia

A Different Scenario

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

Gen. Rex
Fake CA

Fake Log

Gossip versus Collective Signing

Gossip can't protect Alice if she...

● Can't (because she's in Tyrannia)

● Doesn't want to (for privacy), or

● Doesn't have time to

cross-check each authoritative statements.

Collective signing proactively protects her
from secret attacks even via her access network.

● Attacker can't secretly produce valid signature

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

Software Update Scenario

Alice, traveling in Tyrannia, is offered a
software update for her favorite app

● Claims to be “latest version” - but is it?

● Rex's firewall might inject authentic
but outdated, now exploitable version

● If Alice accepts, she is instantly Pwned;
retroactive transparency won't help!

Alice

Timestamping Cothority

Like classic digital timestamp services,
only decentralized.

● Each round (e.g., 10 secs):
1) Each server collects hashes, nonces to timestamp

2) Each server aggregates hashes into Merkle tree

3) Servers aggregate local trees into one global tree

4) Servers collectively sign root of global tree

5) Server give signed root + inclusion proof to clients

● Clients verify signature + Merkle inclusion proof

Verifiably Fresh Software Updates
Alice accepts only updates with fresh timestamp:

● Knows update can't be an outdated version:
tree contains inclusion proof of her nonce

● Knows update can't have targeted backdoor:
witness cothority ensures many parties saw it

Fresh Update
Authority

Witnesses

Alice

Software Update

Merkle
Tree

Alice's
nonce

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Unbiased Public Randomness

• Conclusions and Future Work

Unbiased Public Randomness
Need authority that can “flip coins” in public,
convince everyone result is fair and unbiased.

● Choose lottery winner

● Sampling ballots in election auditing

● Pick BFT clusters from large pool of servers

● Divide large user network into
smaller random anonymity sets
– e.g., Herbivore [Goel/Sirir '04]

Related: Existing Approaches

Algorithmic work on quorum-building

● e.g., King et al, ICDCN 2011

● Unclear how to implement, apply

Randomness via “slow hashes”

● e.g., Lenstra/Wesolowski, 2015

● New, nonstandard crypto assumptions

r3 = v3 - k3c,
r3 = r3

CoSi Protocol Responses?

Appealing near-solution:
● Contributions from

all participants
● Committed in advance,

unpredictable until last phase

But can still be biased
by leader with k colluders
● Use exceptions to

pick “best of”
2k outcomes r4 = v4 - k4c,

r4 = r4

r2 = v2 - k2c,
r2 = r2+r3+r4

r1 = v1 - k1c,
r1 = r1+r2+...+rN

Availability via “life insurance”
• Node "insures" its private key by depositing the key

shares with threshold group of “trustee” servers
– Shamir verifiable secret sharing (VSS)

• Trustees can sign on behalf of failed node

s1

s2

s3

The Challenge

How to pick set of trustees for given witness?

● All nodes trustees (JVSS): doesn't scale, O(N2)

● Witness-chosen: can pick bad group → DoS

● Leader-chosen: pick cronies, get secret early

We need unbiased public randomness
to pick these random trustee subgroups,
to get unbiased public randomness!

RandHound: Protocol Sketch

Intuition: bootstrap from
pairwise unbiased randomness

1)Leader commits to random value RL,
each follower i commits to random Ri

2)Reveal; follower i picks trustees via H(RL,Ri),
deals secret Si to picked trustees

3)Leader commits to threshold set of secrets
s.t. must include at least one honest follower

4)Followers reveal dealt secret shares

RandHound: Security Properties

Assuming a fraction of participants are honest:

Unpredictability: no one can recover the (one)
honest follower's secret before final reveal phase

Unbiasability: only one possible outcome after
leader's threshold-set commit in phase 3

Availability: protocol runs to completion w.h.p.
unless leader dishonestly colludes to DoS itself

Scalability: O(NT), where
trustees T depends only on security parameter

Status

Still preliminary:

● Initial implementation working
(code available on DeDiS github)

● Experimentation in-progress

● Cothority integration in-progress

Talk Outline

• The Need to Decentralize Internet Authorities

• Witness Cothorities: Transparency via Collective Signing

• Timestamp Cothorities: Collectively Attesting Freshness

• Randomness Cothorities: Scalable Unbiased Randomness

• Conclusions and Future Work

Ongoing/Future Work

Backward-compatible integration into authorities

● Web PKI: Certificate Authorities, CT, AKI

● Personal PKI: PGP keyservers, CONIKS

● Practical software release, update services

Build more general collective authorities...

Towards Better Blockchains?
Decentralized consensus, secure ledgers

● Without proof-of-work and massive power waste

● Without risk of temporary forks

● Without 51% attack vulnerability

● Stronger protection for clients, “light” nodes
– Just check one log-head signature for correctness

● Efficient: with FawkesCoin hash-based ledger,
just one public-key crypto operation per round

● Scalable: every server need not store, verify
every record throughout blockchain history

Conclusion

Cothorities build on old ideas
● Distributed/Byzantine consensus protocols
● Threshold cryptography, multisignatures

But demonstrate how to scale trust-splitting
● Strongest-link security among many witnesses
● Practical: demonstrated for 8000+ participants
● Efficient: 1.5-second signing latency at scale

More details: http://arxiv.org/abs/1503.08768

http://arxiv.org/abs/1503.08768

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Real-World Authorities
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Our Solution
	Slide 21
	CoSi Crypto Primitives
	Merkle Trees
	Schnorr Signature
	Collective Signing
	Schnorr Multisignature
	Slide 27
	CoSi Protocol
	Slide 29
	Slide 30
	Exceptions
	Slide 32
	Slide 33
	Implementation
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Life insurance policy
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Conclusions

