Can You Hide in an Internet Panopticon?

Bryan Ford – Yale University

working with:
David Isaac Wolinsky, Joan Feigenbaum,
Henry Corrigan-Gibbs, Ewa Syta, John Maheswaran,
Ramakrishna Gummadi – Yale

Vitaly Shmatikov, Amir Houmansadr,
Chad Brubaker – UT Austin

Aaron Johnson – US Naval Research Lab

University of Texas at Austin – Oct 24, 2013
A Dissident in Repressistan

D wants *strength in numbers*

Protest tomorrow 9am in the square!

Gotta catch D, he's the ringleader

Repressistani Microblogging Forum
Real Situations

Opening Closed Re-
What Was the Role of Social Media During

Summary
Social media played a central role in the Arab Spring. A spike in online recall preceded major events on the ground. Social media shared democratic ideas across international borders.

In response, the governments in Tunisia and Egypt arrested bloggers, tracked online conversations, and shuttered websites and Internet access. For example, in 2005 Egyptian blogger Abdolkarim Nabil Seliman was arrested and imprisoned for four years after criticizing President Hosni Mubarak and the state’s religious institutions. In 2007, a number of bloggers were arrested for organizing and covering social protests when the Egyptian parliament approved controversial constitutional amendments. Many activist Egyptian bloggers, some affiliated with groups such as Kefaya and the April 6 Movement, were arrested and faced physical abuse.
Who Wants to Track You Online?

- Advertisers (if you ever spend money)

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

Every time you go shopping, you share intimate details about your consumption patterns with retailers. And many of those retailers are studying those details to figure out what you like, what you need, and which coupons are most likely to make you happy. Target, for example, has figured out how to data-mine its way into your womb, to figure out whether you have a baby on the way long before you need to start buying diapers.
Who Wants to Track You Online?

- Advertisers (if you ever spend money)
- Vendors (if you ever buy things)

Web sites change prices based on customers' habits

By Anita Ramasastry
FindLaw columnist
Special to CNN.com

Friday, June 24, 2005; Posted: 3:14 p.m. EDT (19:14 GMT)

According to a recent study, many consumers are unaware that price discrimination occurs over the Internet. But apparently, it does.
Who Wants to Track **You** Online?

- Advertisers (if you ever spend money)
- Vendors (if you ever buy things)
- Stalkers (if you're a domestic abuse victim)

12 True Tales of Creepy NSA Cyberstalking

By Kevin Poulsen

The NSA has released some details of 12 incidents in which analysts used their access to America's high-tech surveillance infrastructure to spy on girlfriends, boyfriends, and random people they met in social settings. It's a fascinating look at what happens when the impulse that drives average netizens to look up long-ago ex-lovers on Facebook is mated with the power to fire up a wiretap with a few keystrokes.
Who Wants to Track You Online?

- Advertisers (if you ever spend money)
- Vendors (if you ever buy things)
- Stalkers (if you're a domestic abuse victim)
- Competitors (if you're a business)
- Extremists (if you're minority/gay/pro-choice...)
- The Police (if you're “of interest” w/in 3 hops)
- The Mob (if you're the police)
- ...

How Can You Protect Yourself?

Weak defenses:

- Disable cookies, browser history, Flash, Java
- “Do-Not-Track” (pretty please) flag
- Hide behind NATs, firewalls, corporate VPNs
- Centralized commercial proxy/VPN services
How Can You Protect Yourself?

Much better defense: state-of-the-art tools such as Tor

- https://www.torproject.org

![Diagram showing the use of Tor for anonymity](image-url)
The Current State-of-the-Art

- Good News: Tor probably “isn't broken yet”
The Current State-of-the-Art

Good News: Tor probably “isn’t broken yet”

Bad News: Tor, and onion routing in general, vulnerable to five major classes of attacks

- Global traffic analysis
- Active attacks
- Denial-of-service
- Intersection attacks
- Software exploits

Question is when & how attackers will deploy
The Dissent Project

Goal: rethink the foundations of anonymity

- Offer *quantifiable* and *measurable* anonymity
- Build on primitives offering *provable security*
- Don't just *patch* specific vulnerabilities, but *rearchitect* to address whole *attack classes*

http://dedis.cs.yale.edu/dissent/
Dissent's Contribution

Does not, and *may never* yield “drop-in replacement” for onion routing

— but —

First anonymity system offering *some* (imperfect, incomplete, but...) systematic defense against all five classes of vulnerabilities
Talk Outline

- Anonymity: Motivation and Background
 - *Dissent*, and How It Resists **Strong Attacks**
 - *DC-nets* and *shuffles* resist **global traffic analysis**
 - *Collective control plane* resists **active attacks**
 - *Accountability* resists **denial-of-security (DoSec)**
 - *Metrics* and *buddies* resist **intersection attacks**
 - *Pseudonym VMs* resist **de-anonymizing exploits**
 - **Dissent Status: Where We Are, and Aren't**
 - Conclusion
Talk Outline

- Anonymity: Motivation and Background
- *Dissent*, and How It Resists Strong Attacks
 - *DC-nets* and *shuffles* resist global traffic analysis
 - *Collective control plane* resists active attacks
 - *Accountability* resists denial-of-security (DoSec)
 - *Metrics* and *buddies* resist intersection attacks
 - *Pseudonym* VMs resist de-anonymizing exploits
- Dissent Status: Where We Are, and Aren't
- Conclusion
Traffic Analysis Basics

- Most communication has a *traffic pattern*
 - Lengths and timings of packets in each direction
 - Pattern can be *fingerprinted* without seeing content
Tor Traffic Analysis Scenario

- Alice in Repressistan uses Tor to post on blog server hosted in Repressistan
- State ISP controls both entry and exit hops
- Fingerprint & correlate traffic to deanonymize
Is Traffic Fingerprinting Practical?

General techniques well-known, scalable

- “Inferring the Source of Encrypted HTTP connections” Liberatore and Levine, CCS '06
Do Attackers Actually Do This?

Not sure, but some are working hard on it...

Analytics:

Goes Inta Goes Outta/Low Latency
Find possible alternative accounts for a target. Look for connections to Tor, from the target’s suspected country, near time of target’s activity.

- Current: GCHQ has working version (QUICKANT). R has alpha-tested NSA’s version. NSA’s version produced no obvious candidate selectors.
- Goal: Figure out if QUICKANT works, compare methodologies. Gathering data for additional tests of NSA’s version (consistent, random and heavy user)

(“Tor Stinks” slide deck, Guardian 10/4/2013)
Can De-Anonymize “Real” Users?

Yes, if attacker can monitor an Internet AS or IXP

• “Users Get Routed”, Johnson et al. CCS 13

(a) Time to first stream compromised by AS adversary.

(b) Time to first stream compromised by IXP adversary.
How To Resist Traffic Analysis?

• Option 1: “Pad” traffic to uniform rate
 • **Aqua**, Le Blond et al., SIGCOMM 13
 • Works against *passive* attacks, at bandwidth cost
 • Usually fails against *active* attacks

• Option 2: Fundamentally different primitive
 • Dining Cryptographers (DC-nets) – Chaum, 88
 • **Herbivore**, Sirer, SIGOPS EW 04
 • **Dissent**, CCS 10, OSDI 12, USENIX Sec 13
Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...

• Example: anonymity in a 3-member group
Dining Cryptographers (DC-nets)

Attractive:
• Provable security against traffic analysis

But never widely used:
• Vulnerable to anonymous disruption
• Hard to scale
Why DC-nets Doesn't Scale

- **Computation cost**: $N \times N$ shared coin matrix

- **Network churn**: if *any* participant disappears, *all* nodes must start over

- **Disruption**: any single “bad apple” can jam communication
“Dissent in Numbers” [OSDI 12]

Many clients rely on a few independent servers

- Clients share coins only with servers
- As long as at least one honest server exists, yields ideal anonymity among all honest clients
Scaling to Thousands of Clients

100× larger anonymity sets

- (Herbivore, Dissent v1: ~40 clients)

<1 sec latency w/ 1000 clients
Talk Outline

- Anonymity: Motivation and Background
- *Dissent*, and How It Resists Strong Attacks
 - *DC-nets* and *shuffles* resist global traffic analysis
 - *Collective control plane* resists active attacks
 - *Accountability* resists denial-of-security (DoSec)
 - *Metrics* and *buddies* resist intersection attacks
 - *Pseudonym VMs* resist de-anonymizing exploits
- Dissent Status: Where We Are, and Aren't
- Conclusion
Active Attacks

Attacker perturbs performance to inject traceable side-channel “markers” into flows

• Example: “congestion attacks” against Tor (e.g., Murdoch 05, Evans 09)
Are Active Attacks Feasible?

- “A Practical Congestion Attack on Tor”
 Evans et al. USENIX Security 09
Collective Control Plane (CCC) Model

Policy Oracle controls when/how much to send

- But *does not know* who owns which nyms (can't leak!)

![Diagram of Collective Control Plane Model]

- **Users** → **Data Plane** ("Anonymizer") → **Nyms** via **Control Plane** ("Policy Oracle")
 - Secret inputs
 - Public outputs
Scheduling Example - “Simon Says”

• Round 1: Policy Oracle ("Simon") says, “Pseudonyms 1-5 each get 1-bit request slot”
 • Everyone sends 5-bit DC-nets ciphertext

• Round 2: Policy Oracle ("Simon") says, “Nym 3 wants to send, gets 1024 byte slot”
 • Everyone sends 1024-byte DC-net ciphertext
How CCC Counters Active Attacks

Onion routing preserves *individual* flow properties:

Dissent output paced by *collective* control:
Implementing the CCC

Accountable replication of control plane logic

- Each server implements copy, all must agree
Talk Outline

• Anonymity: Motivation and Background
• *Dissent*, and How It Resists Strong Attacks
 • *DC-nets* and *shuffles* resist global traffic analysis
 • *Collective control plane* resists active attacks
 → *Accountability* resists denial-of-security (DoSec)
 • *Metrics* and *buddies* resist intersection attacks
 • *Pseudonym* VMs resist de-anonymizing exploits
• Dissent Status: Where We Are, and Aren't
• Conclusion
DoS can Compromise Anonymity

Attacker controls some relays

Step 1: victim chooses *partly* compromised path
DoS can Compromise Anonymity

Attacker controls some relays

Step 1: victim chooses *partly* compromised path
Step 2: victim re-rolls until path *completely* broken

Correlate to de-anonymize, but *offer good service!*
Applies to DC-nets designs too!

Example: **Herbivore** [Sirer'04]

- Divide large network into small groups
 - If one doesn't work, join another
- Smart attacker jams *partly-compromised groups*
- Good service in groups with *only one* honest victim
Why Accountability is Important

Dissent can identify and expel a disruptor

- *Without* forcing victims to re-roll dice
- Existing honest members *remain in group*
 - Attacker can't get *new* attack nodes in new group!

![Diagram](image)
Jam-Proofing DC-nets: 3 Ways

1. Dissent v1 [CCS’10]:
 use Brickell/Shmatikov shuffle to distribute hash-checked assignments before round
 • Simple, but requires expensive shuffle each round

2. Scalable Dissent [OSDI ’12]:
 retroactive disruption-tracing “blame” protocol
 • Complex, efficient when not disrupted

3. Verifiable Dissent [USENIX Sec 13]:
 proactive verifiability via zero-knowledge proofs
 • Offline possible, lower blame cost when disrupted
“Blame” with Verifiability: 2-3 orders of magnitude faster
Talk Outline

• Anonymity: Motivation and Background
• *Dissent*, and How It Resists Strong Attacks
 • *DC-nets* and *shuffles* resist global traffic analysis
 • *Collective control plane* resists active attacks
 • *Accountability* resists denial-of-security (DoSec)
 → *Metrics* and *buddies* resist intersection attacks
 • *Pseudonym* VMs resist de-anonymizing exploits
• Dissent Status: Where We Are, and Aren't
• Conclusion
The Intersection Attack Problem

Kate signs posts with pseudonym “Bob”
- Posts signed messages at times T_1, T_2, T_3
- Police intersects user sets online each time
Introducing Buddies

“Hang With Your Buddies to Resist Intersection Attacks” [CCS '13]

Goals:

- *Measure* anonymity under intersection attack
- Actively *mitigate* anonymity loss
- Enforce *lower bounds* by trading availability
A Strawman Buddy System

- Pick a group of *buddies* for my anonymity set
- *Never* send linkable messages except when *all buddies* are also online (group members)
Buddies Conceptual Model

Focus: what adversary learns from *online status*

Adversary sees who is/isn't online, but *not* secret inputs

Adversary sees public outputs
Computing Anonymity Metrics

Policy Oracle *simulates an adversary's view*
- Knows who's online each round (via “tags”)
- Performs “intersection attacks” against Nyms
- Computes anonymity metrics
 - **Possinymity**: “possibilistic deniability”
 - **Indinymity**: “probabilistic indistinguishability”
- Reports metrics, uses them in policy decisions
Possinymity: Possibilistic Deniability

Set of users who *could conceivably* own Nym

- Intersection of sets of all users *online and unfiltered* in rounds where a message appears
- Simplistic, but may build “reasonable doubt”

Nym's Initial Anonymity Set

Users Online in Subsequent Rounds

Resulting Possinymity Set
The “Statistical Disclosure” Problem

Nym's Initial Anonymity Set

Possinymity Set

Indinymity Sets

← clients/users online →

“a”

“b”

“c”
Preserving Indinymity: Example

Nym's Initial Anonymity Set

Possinymity Set

Indinymity Sets

← clients/users online →

“a”

“b”

“c”
Is Resistance Futile?

Analysis based on IRC online status traces

Where intersection attack resistant anonymity sets may plausibly be found

Ephemeral users

online time
message posts

Members

Week 1 Week 2 Week 3 Week 4
How Much Anonymity Can We Get?
Talk Outline

- Anonymity: Motivation and Background
- *Dissent*, and How It Resists Strong Attacks
 - *DC-nets* and *shuffles* resist global traffic analysis
 - *Collective control plane* resists active attacks
 - *Accountability* resists denial-of-security (DoSec)
 - *Metrics* and *buddies* resist intersection attacks
 - *Pseudonym VMs* resist de-anonymizing exploits
- Dissent Status: Where We Are, and Aren't
- Conclusion
Typical System Model

Alice

GUI

Web Browser

Application Processes

Web Browser

Tor Client Proxy

OS Kernel

Client Host

Unprotected Connection

“Here's My IP address!”

Tor Protected Connection

Malicious JavaScript Browser Exploit
Exploits: The Low-Hanging Fruit

Circumvent the Anonymizer, Attack the Browser

Inside the Tor exploit

Summary: Some of the people who were most concerned about Internet privacy, and were using the Tor and its anonymity network, had forgotten the risks.

Attacking Tor: how the NSA targets users' online anonymity

Secret servers and a privileged position on the internet's backbone

Op MULLENIZE and beyond - Staining machines

UK Top Secret Strap1 COMINT

The Problem: A large number of users on one Internet Protocol (IP) address at one time (e.g. in an Internet café) means it is difficult for analysts to identify individual IP addresses or users.

The Solution: Working together, CT and CNE have devised a method to carry out large-scale ‘staining’ as a means to identify individual machines linked to that IP address. Carried out as Op MULLENIZE, this operation is beginning to yield positive results, particularly in User Agent Staining. This is a technique that involves writing a unique marker (or stain) onto a target machine. Each stain is visible in passively collected SIGINT and is stamped into every packet, which enables all the events from that stained machine to be brought back together to recreate a browsing session.
WiNon: VM-hardened Anonymity

Browser etc runs in “pseudonym VMs”

Can communicate only via Dissent and/or Tor; IP address = 192.168.1.1
Best of Both Worlds: Dissent+Tor

Defend against “Little Brother” and “Big Brother”

From Tor:
diverse, wide-area anonymity – if traffic analysis can't break

From Dissent:
some local-area anonymity/deniability, even if adversary can break Tor

Local-Area WiNon group

Alice

RepressCo State ISP

Blog Server

Tor Relays
WiNon Browsing Latency

5 servers, 24 clients, WiFi LAN → usability comparable to Tor

Illustrative only – “apples-to-oranges”
Talk Outline

• Anonymity: Motivation and Background
• *Dissent*, and How It Resists Strong Attacks
 • *DC-nets* and *shuffles* resist global traffic analysis
 • *Collective control plane* resists active attacks
 • *Accountability* resists denial-of-security (DoSec)
 • *Metrics* and *buddies* resist intersection attacks
 • *Pseudonym* VMs resist de-anonymizing exploits

→ Dissent Status: Where We Are, and Aren't
• Conclusion
Current Status

- Proof-of-concept works, available on github
 - **Preliminary**: not at all feature-rich, user-friendly
 - Don't use it [yet] for security-critical activities!
- Long-term applicability questions
 - How well can we make it perform, scale?
 - Broadcast limits scalability for “point-to-point” use
 - Might be very efficient for multicast applications
 - Anonymous chat/microblogging, “town hall” meetings
- Time (and further development) will tell!
Conclusion

Can you hide in an Internet panopticon? It's hard! – due to “five deadly attack classes”

- Global traffic analysis
- Active attacks
- Denial-of-security
- Intersection attacks
- Software exploits

Dissent: is first ground-up anonymity architecture with any plausible solution to all five classes

http://dedis.cs.yale.edu/dissent/