Dissent in Numbers: Making Strong Anonymity Scale

David Wolinsky¹, Henry Corrigan-Gibbs¹, Bryan Ford¹, and Aaron Johnson² ¹Yale University, ²US Naval Research Laboratory

Meet tonight at 7 PM in the park for pizza and beer!

Bob, you're going be spending some time in the slammer!

Making Strong Anonymity Scale?

- Challenge tradeoff between scale and strength in anonymity systems favoring scale
- Goals
 - Strong anonymity (timing analysis resistant)
 - Scalability (100s to 1,000s of active participants)
 - Churn tolerant (unannounced member departures)
 - Accountability

Organization

- Motivation
- Existing Approaches
- Dissent Strong, Scalable Anonymity
 - Computational efficiency
 - Communication efficiency
 - Churn tolerant
 - Anonymity
 - Accountability
- Evaluation
- Conclusions

Organization

- Motivation
- Existing Approaches
- Dissent Strong, Scalable Anonymity
 - Computational efficiency
 - Communication efficiency
 - Churn tolerant
 - Anonymity
 - Accountability
- Evaluation
- Conclusions

Practical Considerations

	Mix-nets	Tor	DC-nets
Strong anonymity	V		V
Scalability		\checkmark	V ¹
Churn tolerant	V	V	
Accountability			V ²

- Mix-nets / Shuffles Chaum, Neff, Wikstrom
- Onion Routing Tor and I2P
- DC-nets ¹Herbivore and ²Dissent v1
 - Herbivore supported many concurrent users but distributed amongst many parallel DC-nets thus lacks the "Strength in Numbers" or large anonymity set sizes

Organization

- Motivation
- Existing Approaches

Dissent – Strong, Scalable Anonymity

- Computational efficiency
- Communication efficiency
- Churn tolerant
- Anonymity
- Accountability
- Evaluation
- Conclusions

Making Strong Anonymity Scale!

- Challenge tradeoff between scale and strength in anonymity systems favoring scale
- Dissent's solution
 - Improving Computation Efficiency
 - Improving Communication Efficiency
 - Handling Churn
 - Identifying Disruptions
 - Maintaining Strong Anonymity

Improving Computational Efficiency

Improving Communication Efficiency

Creating Churn Tolerance

Handling Disruptions via Accountability...

DC-net

DC-net – Disruptions

YALE

DC-net

Safely Deanonymize a Bit

Progress!

- We have gained
 - Improvements in computation and communication
 - Ability to tolerate churn
 - Identify disruptors
- How does this impact strong anonymity?

Dissent retains this feature...

Organization

- Motivation
- Existing Approaches
- Dissent Strong, Scalable Anonymity
 - Computational efficiency
 - Communication efficiency
 - Churn resistance
 - Anonymity
 - Accountability
- Evaluation
- Conclusions

Dissent – Prototype

- Written in C++
 - Qt from networking, serialization, and events processing
 - Crypto++ as the crypto library

Related Work

YALLE

Scaling to Thousands of Clients

CPU Time

Comparison to Shuffles

Churn Resilience

Protocol Breakdown

YALE

Organization

- Motivation
- Existing Approaches
- Dissent Strong, Scalable Anonymity
 - Computational efficiency
 - Communication efficiency
 - Churn resistance
 - Anonymity
 - Accountability
- Evaluation
- Conclusions

Key Take Aways

- We can construct strong and scalable anonymous communication systems
 - O(N²) communication cost to O(N)
 - Churn tolerance
 - Provides an effective means to identify disruptors
- Two orders of magnitude larger anonymity sets than previous DC-net approaches
- Maintains strong anonymity properties from DC-nets

Future Work

- Further bandwidth and computation optimizations
- Slot length scheduling policies
- Better ways to anonymously distribute blame
- Handling long term intersection attacks
- Formal security analysis
- Making available for real applications and real users

Finished!

Thanks, questions?

Dissent – Strong, scalable accountable anonymity Find out more at <u>http://dedis.cs.yale.edu/2010/anon/</u>

We'll be at the poster session tonight!

Extra slides

Scaling to Thousands of Clients

Server₀ knows that Alice, Bob, and Carol submitted: Ciphertext₀ = Ciphertext_A XOR Ciphertext_{A0} XOR Ciphertext_{B0} XOR Ciphertext_{C0}

Commit₀ = Hash(Ciphertext₀)

Server₀ knows that Alice, Bob, and Carol submitted: Ciphertext₀ = Ciphertext_A XOR Ciphertext_{A0} XOR Ciphertext_{B0} XOR Ciphertext_{C0}

Commit₀ = Hash(Ciphertext₀)

YALE

Cleartext_A = blame, nonce, next slot length, msg, hash Ciphertext_{A0} = RNG(Secret_{A0}, length) Ciphertext_A = Ciphertext_{A0} XOR Ciphertext_{A1} XOR Ciphertext_{A2} XOR (0, ..., 0, Cleartext_A, 0, ..., 0)

Identifying Disruptors

Cleartext_A = blame, nonce, next slot length, msg, hash Ciphertext_{A0} = RNG(Secret_{A0}, length) Ciphertext_A = Ciphertext_{A0} XOR Ciphertext_{A1} XOR Ciphertext_{A2} XOR (0, ..., 0, Cleartext_A, 0, ..., 0)

Related Work – Herbivore

Related Work – Earlier Dissent

Future Work in Dissent

- Disruption resistance is online, requires additional steps after the protocol has completed
- Practical use in real environments Such as using WiFi enabled smart phones
- Anonymity boxes isolated environments running within a virtual machine isolating the user's private information from the anonymity network
- Participation limits to prevent Sybil attacks

Dissent Disruption Resistance

- A malicious bit flip resulting from a 0 -> 1 in the cleartext can be used to generate an accusation
 - In a DC-net, client requests accusation shuffle
 - In shuffle, client specifies the flipped bit
- Servers share bits for this bit index, finding either
 - A server sent bits that do not match his ciphertext thus he is guilty of the disruption
 - A client's ciphertext does not match the accumulation of the server's bits
- Clients rebut by sharing with servers the shared secret of the offending server, accepting blame, or remaining suspect

Analytical Comparison

Feature	DC-Nets	Herbivore	Dissent
Messages	O(N ²)	O(N)	O(N)
Secrets	O(N ²)	O(N ²)	O(N*M)
Anon	О(К)	О(К)	O(K), assuming 1 honest server

- N = Members (clients)
- M = Servers
- K = honest members

Server Count Effects

Analytical Comparison

	Feature	Dissent	D3
Shuffle	Comm	O(N) serial steps	O(1)
	Anon	O(K), K = honest members	O(K), K = honest members, assuming 1 honest server
DC-net	Comm	O(N ²) messages O(N ²) shared secrets	O(N) messages O(N) shared secrets
	Anon	O(K), K = honest members	O(K), K = honest members, assuming 1 honest server

Client/Server Trust Models

- Trust all servers
 - Unrealistic in the real world
- Trust no servers SUNDR
 - Ideal but complicated due to lack of knowledge and message time constraints
- Trust at least one server Anytrust
 - With one honest server, anonymity set is equal to the set of all honest members (clients)
 - No need to know which server to trust
 - (Used in Mix-nets)

DC-Nets Generalized

- Members share secrets with each other
 - Such as Diffie-Hellman exchanges
 - Can be used to generate variable length string
- Each member constructs a ciphertext
 - XOR in the string generated by each shared secret
 - Optionally, XOR secret message
- Positions inside a DC-net can be assigned via randomness (Ethernet style backoff) or a Mix-Net
- After obtaining a copy of each ciphertext
 - XOR each ciphertext together
 - Effectively, cancelling out generated strings
 - Revealing secret messages

Existing Approaches

Method	Weakness
Mix-Nets, Tor	Traffic analysis attacks
Group / Ring Signatures	Traffic analysis attacks
Voting Protocols	Fixed-length messages
DC Nets	Anonymous DoS attacks
Dissent	Intolerant to churn / long delays between msgs
Herbivore	Small anonymity set

