Dissent. Accountable Anonymous
Group Communication

Bryan Ford
Joan Feigenbaum, David Wolinsky,

Henry Corrigan-Gibbs, Shu-Chun Weng, Ewa Syta
Yale University

Vitaly Shmatikov, Aaron Johnson
University of Texas at Austin

Presented at MPI-SWS — Jan 4, 2012

1

Why do we want anonymity online”

Many motivations:

* Discuss sensitive/controversial topics safely;
protect freedom of speech

* Citizens of authoritarian states evading repression

* Voting in elections or deliberative organizations
Collaborative content creation/editing, e.g., Wikipedia

* Protect secrecy of bids in commercial auctions
e Law-enforcement “tip” or whistleblowing hotlines
* Peer review processes for research, journalism

Motivating Scenario

Alice, Bob, Charlie, Dave, & friends

* Citizens of Repressistan

* Wish to connect, organize online safely
Government is powerful but not all-powerful

* Can'tjust “turn off Internet” indefinitely or
throw all protesters in jail: cost is too high

* Must identify and make examples of the
movement's outspoken “activist leaders”

Alice & friends need “strength in numbers”

3

Being Anonymous: Naive Ways

Assume the Internet is "anonymous enough”

— |IP addresses never provided real anonymity;
many ways to track users, machines, browsers

Use centralized anonymizing relays/proxies
— Central point of failure, prime compromise target

(%)

Anonymous Anonymizing Relay Public
Client Server

Being Anonymous: Better Ways

MIX networks, onion routing systems: e.qg., Tor
* Tunnel through a series of anonymizing relays
* Protects even if any one is malicious or hacked

Public

Anonymous
Server

O
Client Q Q

Anonymizing Relays

Limitations of Onion Routing

Vulnerable to traffic analysis, correlation attacks
— compromised, colluding first & last hop relays

— Y

Client < correlate —» Server
— compromised entry relay and server

—te o

Client < correlate » 1700 gerver

— first & last links cross same monitored network path

@-H-@—@—@"J*Q

Client 15101 4 correlate — » Server

Limitations of Onion Routing

Vulnerable to anonymous abuse

* No accountability for misbehavior

— No one knows you're a dog,
SO everyone gets to behave like a dog

* Unlimited supply of “fresh” pseudonyms
— Create sock-puppet “supporters” in online forums
— Vote many times in online polls, elections

— Get banned, come back with new IP address
(loser is next user of old IP address or exit relay)

Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...
e Ex. 1: “Alice+Bob” sends a 1-bit secret to Charlie.

Alice’s Alice

Secret @

Alice+Bob’s

Shared @
Random Bit \

Bob

Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...
* Ex. 2: Homogeneous 3-member group anonymity

Alice’s Alice /@Alice+Charlie's
Secret Random Bit
@:‘/
Alice+Bob's te

Random Bit @

“———1)Bob+Charlie's

Bob Random Bit

Dining Cryptographers (DC-nets)

Tantalizingly strong anonymity guarantees:
* Unconditional information-theoretic anonymity

— (if we use “real” random coins, which we won't)
* Optimal security against traffic analysis & collusion

— Anonymity set = nodes noft colluding with adversary
Never successfully used in practical systems:
* No provision for accountability or proportionality

— Malicious member can jam by sending random bits
* Not readily scalable to large groups

— Especially with node failure, network churn
10

v

Talk Outline

Online Anonymity: What and Why?

An Accountable Group Anonymity Model

A MIX-based Accountable Shuffle

Dining On Schedule: Accountable DC-nets

Current Results and Ongoing Work

11

Dissent: Accountable,
Proportional Group Anonymity

A group communication model akin to DC-nets

* Assumes a well-defined group of N = 2 parties
wishes to communicate with each other online

* Members have persistent identities known to
each other — may or may not be “public”

* Wish to hide which member sent a message,
but make it clear that some member sent it

* Wish to maintain proportionality: each member
gets one message, vote, bid, etc. per “round”

12

Bulletin Boards, Chat Rooms

13

Group Voting, Deliberation

Alice B :
o ity Dave
&
NI o Charlie |

Anonymous Auctions

Charlie

15

“Shuffling” Into Group Anonymity

Input: secret message m; of length L; from each group member j

Member 1 Member 2 Member 3

Output: send all members' messages to target(s) in shuffled order

16

Anonymity with Accountability

Dissent's group model facilitates accountability:
* Not “just anyone™ may send, vote, bid, etc. —
group membership can reflect “credentials”
— Board members, journalists, etc., acting collectively

* 1-to-1 shuffle prevents Sybil attacks

— Each “real” group member can send exactly one
message per shuffle, cannot act like many users

* Resistant to anonymous disruption attacks

— If any member attempts to jam or block protocaoal,
Dissent exposes attacker's real identity, can expel
17

Dissent Network Model

Quasi-Client/Server Model:

* Client nodes represent group members (users)
wishing to post messages anonymously

e Server nodes are intermediaries that facilitate
anonymous group communication

Servers

Clients @

18

Dissent Network Model

Dissent “servers” could actually be:

* Dedicated or volunteer servers, like Tor relays
* Super-peers chosen from clients, P2P-style

* Cloud-based virtual services run professionally

“Servers” or
“Super-peers” or
“Cloud services”

Clients @

19

Dissent Trust Model

Any number of clients may be malicious, collude

* Aclient's effective "anonymity set” includes
all clients not colluding with adversary

— (trivally optimal for colluding adversary model)

Servers

Clients

Anonymity set 7 20

Dissent Trust Model

All but one server may be malicious, collude
* Clients need not know which server(s) to trust

* Clients of dishonest servers are still protected!
— Unlike existing MIX, DC-nets cascading schemes

Servers

Clients

21

Anonymity set A

v

Talk Outline

Online Anonymity: What and Why?

An Accountable Group Anonymity Model

A MIX-based Accountable Shuffle

Dining On Schedule: Accountable DC-nets

Current Results and Ongoing Work

22

The Dissent Shuffle — Overview

Assuming N clients, M servers:

1.Servers choose inner, outer encryption keys
2.Clients encrypt messages in 2M “onion layers”
3.Servers MIX and decrypt outer layers
4.Clients validate result, broadcast go/no-go

5.Servers either:

— Decrypt inner layers of permuted messages, or
— Reveal permutation and trace at least one disruptor

23

Phase 1: Setup

Assume at outset:
— All nodes know each others' public signing keys
— All nodes sign and verify all messages

Each client / chooses:
— Secret message m; padded to fixed length L

Each server j creates outer and inner
encryption key pairs: (O;,0%) and (/;, I')

Each server / broadcasts public

encryption keys O}, I';to all clients

24

Phase 2: Onion Encryption

Each client -
e Encrypts m with inner keys I, ,...,I". to create m’

e Encrypts m’ with outer keys O’ ,...,O’, to create m"

Example with N = 3 clients, M = 2 servers:

m'={{ m,={{m), ¥, 10,0

1

m,={{ my={{ my), ¥, }0,}0

2

m={{ my={{[m M}, ¥, 10,10

25

Phase 3: Anonymization (1)

o Server 1 collects messages (m”, ..., m")).

e Forj «— 1to M, server
— Decrypts /" outer encryption layer with key Oj

— Randomly permutes the list of partially decrypted messages,
temporarily saves the random permutation

— Forwards permuted message list to server j+7 (if j < N)
o Server M broadcasts permuted m’ list to all nodes

26

Phase 3: Anonymization (2)

omt =0 m = Dmg M, WY 30, 0]

A Output from server I:

- encrypted messages m”", partly Q?Crypted meé’saggs m'

J o n random.. secret order
{{ m 5} i { By }}
{ { m 3 i { g }}
{ { m 3} { pEs

{ { m }} }
(N j— M,)}) —()
Server 1 { { m, 3} Server 2
decrypt, permute decrypt, permute

27

Phase 4: Validation

After anonymization, no client or server
knows the final permutation, but every client |
should see his own m’ in the list!

Each client / looks for m’ in the permuted list

* Present — client / broadcasts “GO”
e Absent — client / broadcasts “NO-GO”

28

Phase 5: Decryption or Blame

Each serverj collects all GO/NO-GO messages
* GO messages from all clients:
— Each server j broadcasts his private inner key Ij

— All clients use inner keys [,...,I to decrypt all m’
revealing all cleartext messages m,

* NO-GO message from any client:

— Each server j broadcasts proof that he decrypted and
permuted messages properly in Phase 3

— All servers use these proofs to uncover disruptor(s)

29

Anonymity of the Shuffle

Every server secretly randomizes the shuffle

* Even if any subset of servers collude,
any single honest server protects all clients

* Resists traffic analysis, correlation attacks:
traffic reveals nothing about who sent what

* Malicious ciphertext substitution or duplication
always detected at GO/NO-GO if not before

* All key security properties provable
(see CCS 10 paper for details)

30

Accountability of the Shuffle

Any NO-GO message obliges all nodes to
“prove their innocence’, i.e., that they:

* Correctly encrypted messages in phase 2
* Correctly decrypted/permuted in phase 3
* Correctly validated final list in phase 4

This process reveals the “secret” permutation, but
leaves permuted cleartexts (m;) undecipherable

* Protected by all honest servers' inner keys

31

Scalability of the Shuffle

All phases parallelizable except 3: anonymization
* M servers “take turns” permuting & decrypting
* Not show-stopping if N clients > M servers

Scenario 1: servers are M independently run,
cloud-based “Dissent service providers”

* Each “server” is a parallel, fault-tolerant cluster

Scenario 2: servers are M super-peers chosen
randomly from N > M clients in P2P setting

* If f-N clients are faulty, f M chance of failure

32

v

Talk Outline

Online Anonymity: What and Why?

An Accountable Group Anonymity Model

A MIX-based Accountable Shuffle

Dining On Schedule: Accountable DC-nets

Current Results and Ongoing Work

33

Limitations of MIX-based Shuffle

Inefficient when only some clients are “talking”
* All clients must pad messages to same length

* |If one “talker” wants to send useful L-byte file,
each “listener” must send L bytes of garbage

M-server serialized path still incurs latency

* We'd prefer if entire protocol was parallelizable
Shuffle must “start over” if a client comes or goes
* Natural or malicious churn could cause DoS

34

Solution

Use MIX-based shuffle to bootstrap & schedule
a dining cryptographers (DC-nets) phase

Outline
1.Setup pseudonym keys and transmit schedule

2.Share secrets between all client/server pairs
3.Transmit any number of DC-nets rounds

35

Setup 1: Nym-Key Schedule

Use MIX-based shuffle above to “bootstrap”
1.Each client creates fresh pseudonym keypair

2.5ervers MIX-shuffle public nym-keys
* Yields an agreed-upon permutation of nym-keys
* Each client knows all keys but only its own position

nym-keypair
per client

shuffle public keys — >

agreed-upon
nym-key permutation

Setup 2: Shared Secrets

* Each node publishes a Diffie-Hellman (DH) key

— Owner of each key well-known, not anonymous

* Each client forms DH secret with each server,
each server forms DH secret with each client

* Use each secret as seed for shared PRNG

M Servers

\\“
\\\\\\\\
\\“

\\\\\\ / Il/, ' //II,

N Clients O O O Q C) Q ®

Transmission Rounds

Transmission proceeds in rounds scheduled by
agreed-upon nym-key permutation

1.All clients send bits on behalf of slot 1's owner
2 .All clients send bits on behalf of slot 2's owner
3....

Clients know which nym-key owns a given slot,
but not which client owns which (other) slots.

seneave (1] (2] (2 (2 (@ [-

Time

38

Computing Cipherstreams

In an L-bit transmission round:

* Each server j XORs together next L bits
of PRNG streams shared with each client

* Each client i XORs together next L bits
of PRNG streams shared with each server

— If client / holds nym-key for current round,
further XORs in his L-bit message

* Servers collect, XOR all cipherstreams
— Shared PRNG streams cancel, leaving message

39

The Cipherstream Matrix

Ex: N=3 clients, M = 2 servers, L = 4 bits,
client 2 owns nym-key for current round

Client 1 Client 2 Client 3

‘ 1010 ‘anonymous
message
Server 1 1101 '@ 0110 © 1001 0010 %
servers' %
® secret ® streams © ® cipher- °
Server2 1 0011 ®1 1011 ® 1 0010 1010 | streams :
1110 © | 0111 '® 1011 ® ‘1010‘

clients' cipherstreams 40

Anonymity Properties

Assuming at least 1 server is honest:

* Each honest client shares secret PRNG stream
with that server
— These shared streams unknown to adversary
— Different combination XORed in each cipherstream

— Adversary can't distinguish any honest client's
cipherstream (individually) from random bits

* Guarantee depends on strength of DH, PRNG

41

Accountability Properties

Owner of transmission slot must sign message
with private nym-key for that slot

* Nodes can verify signature, corruption obvious

On corruption, nontrivial multi-round blame
protocol required to identify source of corruption

 Guaranteed to succeed within “a few rounds”

Ongoing work: DC-nets protocol with proactive
zero-knowledge proofs of correctness

42

Scalability Properties

All computation, transmission fully parallelizable
P2P multicast-trees can optimize network usage:
1.XOR all cipherstreams on way up tree

2.Root multicasts plaintext result back down

Low latency/load, bandwidth 2X “plain” multicast

. @ 1.XOR combining 2. multicast ;

03/19/12

Robustness Properties

We assume servers are “reliable”
* Must ensure either via selection or design
* Server churn requires re-shuffle, restart

Clients may join/leave frequently, however
* Servers must recompute their cipherstreams

* Clients don't need to, as their cipherstreams
depend only on secrets shared with servers

03/19/12

Talk Outline

Online Anonymity: What and Why?

An Accountable Group Anonymity Model
A MIX-based Accountable Shuffle

Dining On Schedule: Accountable DC-nets
Current Results and Ongoing Work

45

Current Status

* Two working but less-scalable prototypes built,
tested already (one Python, one C++)

— See CCS 10 paper for performance/evaluation

* Third, more scalable prototype mostly done,
iImplementing the techniques discussed here

— Evaluation not yet done — no concrete results yet

03/19/12

Further Ongoing Work

Proactive handling of network churn

—e.g., ECC-encode messages across multiple
redundant combining/distribution trees

Handling intersection attacks
— Risk if user retains a pseudonym “a long time”
— Defense: hide which members are online

— Exploring use of ring signatures,
anonymous deniable authentication schemes...

Deployment in “real” group communication apps!

47

Conclusion

The Dissent project is exploring anonymity in a
group communication context

* Stronger security compared to onion routing
— Anonymity: resistant to traffic analysis
— Accountability: resistant to sybil attacks, disruption

* Early prototypes working, but many challenges
remain before realistic deployment!

http://dedis.cs.yale.edu/2010/anon/

03/19/12

http://dedis.cs.yale.edu/2010/anon/

	Slide 1
	Need for Anonymity (2)
	Slide 3
	Slide 4
	Basic Operation of Onion Routing
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Phase 1: Setup
	Phase 2: Onion Encryption
	Phase 3: Anonymization (1)
	Phase 3: Anonymization (2)
	Phase 4: Validation
	Phase 5: Decryption or Blame
	Slide 30
	How Dissent Provides Accountability
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

