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Why do we want anonymity online”

Many motivations:

* Discuss sensitive/controversial topics safely;
protect freedom of speech

* Citizens of authoritarian states evading repression

* Voting in elections or deliberative organizations
Collaborative content creation/editing, e.g., Wikipedia

* Protect secrecy of bids in commercial auctions
e Law-enforcement “tip” or whistleblowing hotlines
* Peer review processes for research, journalism




Motivating Scenario

Alice, Bob, Charlie, Dave, & friends

* Citizens of Repressistan

* Wish to connect, organize online safely
Government is powerful but not all-powerful

* Can'tjust “turn off Internet” indefinitely or
throw all protesters in jail: cost is too high

* Must identify and make examples of the
movement's outspoken “activist leaders”

Alice & friends need “strength in numbers”
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Being Anonymous: Naive Ways

Assume the Internet is "anonymous enough”

— |IP addresses never provided real anonymity;
many ways to track users, machines, browsers

Use centralized anonymizing relays/proxies
— Central point of failure, prime compromise target
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Being Anonymous: Better Ways

MIX networks, onion routing systems: e.qg., Tor
* Tunnel through a series of anonymizing relays
* Protects even if any one is malicious or hacked
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Limitations of Onion Routing

Vulnerable to traffic analysis, correlation attacks
— compromised, colluding first & last hop relays
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Limitations of Onion Routing

Vulnerable to anonymous abuse

* No accountability for misbehavior

— No one knows you're a dog,
SO everyone gets to behave like a dog

* Unlimited supply of “fresh” pseudonyms
— Create sock-puppet “supporters” in online forums
— Vote many times in online polls, elections

— Get banned, come back with new IP address
(loser is next user of old IP address or exit relay)



Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...
e Ex. 1: “Alice+Bob” sends a 1-bit secret to Charlie.
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Dining Cryptographers (DC-nets)

Another fundamental Chaum invention from the 80s...
* Ex. 2: Homogeneous 3-member group anonymity
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Dining Cryptographers (DC-nets)

Tantalizingly strong anonymity guarantees:
* Unconditional information-theoretic anonymity

— (if we use “real” random coins, which we won't)
* Optimal security against traffic analysis & collusion

— Anonymity set = nodes noft colluding with adversary
Never successfully used in practical systems:
* No provision for accountability or proportionality

— Malicious member can jam by sending random bits
* Not readily scalable to large groups

— Especially with node failure, network churn
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Dissent: Accountable,
Proportional Group Anonymity

A group communication model akin to DC-nets

* Assumes a well-defined group of N = 2 parties
wishes to communicate with each other online

* Members have persistent identities known to
each other — may or may not be “public”

* Wish to hide which member sent a message,
but make it clear that some member sent it

* Wish to maintain proportionality: each member
gets one message, vote, bid, etc. per “round”
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Bulletin Boards, Chat Rooms
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Group Voting, Deliberation
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Anonymous Auctions

Charlie
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“Shuffling” Into Group Anonymity

Input: secret message m; of length L; from each group member j

Member 1 Member 2 Member 3

Output: send all members' messages to target(s) in shuffled order
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Anonymity with Accountability

Dissent's group model facilitates accountability:
* Not “just anyone™ may send, vote, bid, etc. —
group membership can reflect “credentials”
— Board members, journalists, etc., acting collectively

* 1-to-1 shuffle prevents Sybil attacks

— Each “real” group member can send exactly one
message per shuffle, cannot act like many users

* Resistant to anonymous disruption attacks

— If any member attempts to jam or block protocaoal,
Dissent exposes attacker's real identity, can expel
17



Dissent Network Model

Quasi-Client/Server Model:

* Client nodes represent group members (users)
wishing to post messages anonymously

e Server nodes are intermediaries that facilitate
anonymous group communication

Servers
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Dissent Network Model

Dissent “servers” could actually be:

* Dedicated or volunteer servers, like Tor relays
* Super-peers chosen from clients, P2P-style

* Cloud-based virtual services run professionally

“Servers” or
“Super-peers” or
“Cloud services”

Clients @
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Dissent Trust Model

Any number of clients may be malicious, collude

* Aclient's effective "anonymity set” includes
all clients not colluding with adversary

— (trivally optimal for colluding adversary model)
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Dissent Trust Model

All but one server may be malicious, collude
* Clients need not know which server(s) to trust

* Clients of dishonest servers are still protected!
— Unlike existing MIX, DC-nets cascading schemes

Servers

Clients
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The Dissent Shuffle — Overview

Assuming N clients, M servers:

1.Servers choose inner, outer encryption keys
2.Clients encrypt messages in 2M “onion layers”
3.Servers MIX and decrypt outer layers
4.Clients validate result, broadcast go/no-go

5.Servers either:

— Decrypt inner layers of permuted messages, or
— Reveal permutation and trace at least one disruptor
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Phase 1: Setup

Assume at outset:
— All nodes know each others' public signing keys
— All nodes sign and verify all messages

Each client / chooses:
— Secret message m; padded to fixed length L

Each server j creates outer and inner
encryption key pairs: (O;,0%) and (/;, I')

Each server / broadcasts public

encryption keys O}, I';to all clients
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Phase 2: Onion Encryption

Each client -
e Encrypts m with inner keys I, ,...,I". to create m’

e Encrypts m’ with outer keys O’ ,...,O’, to create m"

Example with N = 3 clients, M = 2 servers:

m'={{ m,={{m ), ¥, 10,0

1

m,={{ my={{ my ), ¥, }0,}0

2

m={{ my={{[m M}, ¥, 10,10
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Phase 3: Anonymization (1)

o Server 1 collects messages (m”, ..., m")).

e Forj «— 1to M, server
— Decrypts /" outer encryption layer with key Oj

— Randomly permutes the list of partially decrypted messages,
temporarily saves the random permutation

— Forwards permuted message list to server j+7 (if j < N)
o Server M broadcasts permuted m’ list to all nodes
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Phase 3: Anonymization (2)

omt =0 m = Dmg M, WY 30, 0]

A Output from server I:

- encrypted messages m”", partly ..... Q?Crypted meé’saggs m'

J o n random.. secret order
{{ m 5} i { By }}
{ { m 3 i { g }}
{ { m 3} { pEs

{ { m }} }
(N j— M, )} ) —( )
Server 1 { { m, 3} Server 2
decrypt, permute decrypt, permute
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Phase 4: Validation

After anonymization, no client or server
knows the final permutation, but every client |
should see his own m’ in the list!

Each client / looks for m’ in the permuted list

* Present — client / broadcasts “GO”
e Absent — client / broadcasts “NO-GO”
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Phase 5: Decryption or Blame

Each serverj collects all GO/NO-GO messages
* GO messages from all clients:
— Each server j broadcasts his private inner key Ij

— All clients use inner keys [ ,...,I to decrypt all m’
revealing all cleartext messages m,

* NO-GO message from any client:

— Each server j broadcasts proof that he decrypted and
permuted messages properly in Phase 3

— All servers use these proofs to uncover disruptor(s)
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Anonymity of the Shuffle

Every server secretly randomizes the shuffle

* Even if any subset of servers collude,
any single honest server protects all clients

* Resists traffic analysis, correlation attacks:
traffic reveals nothing about who sent what

* Malicious ciphertext substitution or duplication
always detected at GO/NO-GO if not before

* All key security properties provable
(see CCS 10 paper for details)
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Accountability of the Shuffle

Any NO-GO message obliges all nodes to
“prove their innocence’, i.e., that they:

* Correctly encrypted messages in phase 2
* Correctly decrypted/permuted in phase 3
* Correctly validated final list in phase 4

This process reveals the “secret” permutation, but
leaves permuted cleartexts (m;) undecipherable

* Protected by all honest servers' inner keys
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Scalability of the Shuffle

All phases parallelizable except 3: anonymization
* M servers “take turns” permuting & decrypting
* Not show-stopping if N clients > M servers

Scenario 1: servers are M independently run,
cloud-based “Dissent service providers”

* Each “server” is a parallel, fault-tolerant cluster

Scenario 2: servers are M super-peers chosen
randomly from N > M clients in P2P setting

* If f-N clients are faulty, f M chance of failure
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Limitations of MIX-based Shuffle

Inefficient when only some clients are “talking”
* All clients must pad messages to same length

* |If one “talker” wants to send useful L-byte file,
each “listener” must send L bytes of garbage

M-server serialized path still incurs latency

* We'd prefer if entire protocol was parallelizable
Shuffle must “start over” if a client comes or goes
* Natural or malicious churn could cause DoS
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Solution

Use MIX-based shuffle to bootstrap & schedule
a dining cryptographers (DC-nets) phase

Outline
1.Setup pseudonym keys and transmit schedule

2.Share secrets between all client/server pairs
3.Transmit any number of DC-nets rounds
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Setup 1: Nym-Key Schedule

Use MIX-based shuffle above to “bootstrap”
1.Each client creates fresh pseudonym keypair

2.5ervers MIX-shuffle public nym-keys
* Yields an agreed-upon permutation of nym-keys
* Each client knows all keys but only its own position

nym-keypair
per client

shuffle public keys — >

agreed-upon
nym-key permutation




Setup 2: Shared Secrets

* Each node publishes a Diffie-Hellman (DH) key

— Owner of each key well-known, not anonymous

* Each client forms DH secret with each server,
each server forms DH secret with each client

* Use each secret as seed for shared PRNG

M Servers

\\“
\\\\\\\\
\\“

\\\\\\ / Il/, ' //II,

N Clients O O O Q C) Q ®



Transmission Rounds

Transmission proceeds in rounds scheduled by
agreed-upon nym-key permutation

1.All clients send bits on behalf of slot 1's owner
2 .All clients send bits on behalf of slot 2's owner
3....

Clients know which nym-key owns a given slot,
but not which client owns which (other) slots.

seneave (1] (2] (2 (2 (@ [ -

Time
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Computing Cipherstreams

In an L-bit transmission round:

* Each server j XORs together next L bits
of PRNG streams shared with each client

* Each client i XORs together next L bits
of PRNG streams shared with each server

— If client / holds nym-key for current round,
further XORs in his L-bit message

* Servers collect, XOR all cipherstreams
— Shared PRNG streams cancel, leaving message
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The Cipherstream Matrix

Ex: N=3 clients, M = 2 servers, L = 4 bits,
client 2 owns nym-key for current round

Client 1 Client 2 Client 3

‘ 1010 ‘anonymous
message
Server 1 1101 '@ 0110 © 1001 0010 %
servers' %
®  secret ® streams © ®  cipher- °
Server2 1 0011 ®1 1011 ® 1 0010 1010 | streams :
1110 © | 0111 '® 1011 ® ‘1010‘

clients' cipherstreams 40



Anonymity Properties

Assuming at least 1 server is honest:

* Each honest client shares secret PRNG stream
with that server
— These shared streams unknown to adversary
— Different combination XORed in each cipherstream

— Adversary can't distinguish any honest client's
cipherstream (individually) from random bits

* Guarantee depends on strength of DH, PRNG
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Accountability Properties

Owner of transmission slot must sign message
with private nym-key for that slot

* Nodes can verify signature, corruption obvious

On corruption, nontrivial multi-round blame
protocol required to identify source of corruption

 Guaranteed to succeed within “a few rounds”

Ongoing work: DC-nets protocol with proactive
zero-knowledge proofs of correctness
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Scalability Properties

All computation, transmission fully parallelizable
P2P multicast-trees can optimize network usage:
1.XOR all cipherstreams on way up tree

2.Root multicasts plaintext result back down

Low latency/load, bandwidth 2X “plain” multicast

. @ 1.XOR combining 2. multicast ;

03/19/12



Robustness Properties

We assume servers are “reliable”
* Must ensure either via selection or design
* Server churn requires re-shuffle, restart

Clients may join/leave frequently, however
* Servers must recompute their cipherstreams

* Clients don't need to, as their cipherstreams
depend only on secrets shared with servers
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Current Status

* Two working but less-scalable prototypes built,
tested already (one Python, one C++)

— See CCS 10 paper for performance/evaluation

* Third, more scalable prototype mostly done,
iImplementing the techniques discussed here

— Evaluation not yet done — no concrete results yet
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Further Ongoing Work

Proactive handling of network churn

—e.g., ECC-encode messages across multiple
redundant combining/distribution trees

Handling intersection attacks
— Risk if user retains a pseudonym “a long time”
— Defense: hide which members are online

— Exploring use of ring signatures,
anonymous deniable authentication schemes...

Deployment in “real” group communication apps!

47



Conclusion

The Dissent project is exploring anonymity in a
group communication context

* Stronger security compared to onion routing
— Anonymity: resistant to traffic analysis
— Accountability: resistant to sybil attacks, disruption

* Early prototypes working, but many challenges
remain before realistic deployment!

http://dedis.cs.yale.edu/2010/anon/
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