
ar
X

iv
:1

31
2.

36
65

v1
 [

cs
.O

S
]

12
 D

ec
 2

01
3

WiNoN — Plugging the Leaky Boat of Web Anonymity
PRELIMINARY DRAFT

David Isaac Wolinsky and Bryan Ford
Yale University

ABSTRACT
Despite the attempts of well-designed anonymous com-
munication tools to protect users from being tracked or
identified, other artifacts, such as a user’s environment
and behavior, may leak a user’s identity. Plugging this
leaky boat of web anonymity requires a “top-to-bottom”
whole-system approach, rather than focusing on specific
protocols or layers. As an initial step, we present WiNoN,
a general purpose anonymity-centric system architecture
that plugs identity leaks from the network layer up. The
core concept powering WiNoN–nym-browse or pseudo-
nym browsing mode – gives the user a web-browsing en-
vironment in which each of the user’s contextually in-
dependent web activities run in unique, yet homogenous
containers. This enforced isolation limits accidental leak-
age of private information regardless of misconfigured
anonymity tools, trojan applications, or bugged files. This
paper explores the WiNoN design space and presents an
early prototype supporting Tor, Dissent, and SWEET com-
munication tools as well as an incognito mode.

1. INTRODUCTION
In Repressistan, a country ruled by an authoritar-

ian regime, the state-controlled ISP regularly mon-
itors the traffic of online users in order to suppress
dissent. Aware of these dangers, Alice, a resident
of Repressistan, employs state-of-the-art anonymous
browsing software, such as Tor [7]. If Alice uninten-
tionally accesses Flash content, which bypasses her
anonymizing proxy, or transmits a JPEG image con-
taining EXIF information linked to her camera, she
may well compromise her identity. Unfortunately,
even the best anonymity systems currently available
cannot prevent Alice from accidentally leaking her
personal information across an anonymous channel,
or her anonymous identity across a public channel.
Worse, even if Alice filters her traffic and the con-

tent she shares, she does so under the unrealistic
assumption that her anonymous messages remain
unlinkable across time. Many realistic communica-
tion activities, such as interactive anonymous web
browsing sessions, or a series of blog posts signed un-
der a pseudonym, make communication linkable and

thereby are vulnerable to traffic correlation and in-
tersection attacks [16]. Even carefully-designed an-
onymity systems such as Tor leak identifying mate-
rial useful in intersection attacks, when viewed from
a “whole-system” perspective: e.g., IP or MAC ad-
dresses, Web browser fingerprints [9], or operating
system behavior [20]. If Alice repeatedly posts sen-
sitive messages using the same obscure version of
Firefox or holds a particular long-lived cookie, and
the Repressistani police observe the consistent pres-
ence of a particular user online when these postings
occur, no theoretical guarantees at the anonymous
messaging layer will protect her. As a result the Re-
pressistani police may confiscate her computer lit-
tered with evidence of her communication.
Further, the expedient and hence unavoidable prac-

tice of building anonymous communication systems
out of software components not designed with an-
onymity in mind—popular web browsers—creates
pervasive risks of accidental identity leakage, such as
via third-party plug-ins that circumvent the anony-
mous forwarding path [21, 10]. Non-expert users can
also unwittingly reveal their identities in many ways,
for example, by incorrectly tracking the state of their
browser’s “anonymity” mode. In general, systems
meant to protect even naive users are difficult to
design and implement, made even more challenging
by the various hardware and software configurations
found on different user machines.
To protect users from “accidentally shooting them-

selves in the foot” by inadvertently leaking identify-
ing information, we introduceWiNoN, a general pur-
pose anonymity-centric system that addresses these
challenges from a cross-layer, “whole-system” per-
spective. In one of many WiNoN deployment mod-
els, as illustrated in Figure 1, Alice has obtained a
WiNoN USB flash drive and an ”anonymous” USB
WiFi device purchased using cash. Upon starting
her personal computer with the USB flash drive, she
enters the WiNoN browser with support for nym-
browse—a novel concept for anonymous web brows-
ing that forks each of her web activities into indepen-
dent domains each with their own quasi-persistent

1

http://arxiv.org/abs/1312.3665v1

Figure 1: WiNoN organization

state and anonymous communication channels. The
WiNoN environment allows her to safely browse all
web content including Flash content and even post
locally stored content, such as JPEG images, with-
out fear of accidentally compromising herself. At
the end of her session, she throws away both USB
devices leaving behind no trace of her activities.
Previous work on building anonymous environ-

ments focused on amnesiac behavior [26], homoge-
neous environments [26, 30], enforced anonymous
communication [30], and even scrubbing of file types [1,
3, 25, 29]. Amnesiac behavior provides plausible de-
niability but requires the user to remember and re-
produce state. Existing environments support only a
single anonymous communication tool, Tor [7], thus
limiting their applicability for other forms of anony-
mous communication or for combining such tools
without security concerns. Current scrubbing ef-
forts require explicit knowledge of the tool, which
unaware users may bypass without a second thought.
Related work on securing web browsing [27, 17] have
eliminated many browser-based attacks, however, such
efforts offer no support for anonymous communica-
tion.
In this paper, we explore the WiNoN design space

and how it provides an evolutionary step for anony-
mous web browsing. Specifically, WiNoN introduces
the following novel concepts: 1) independent state
and anonymous channels for each independent web
activity, 2) quasi-persistent system state per-web ac-
tivity that provides the same plausible deniability as
amnesiac behavior, 3) seamless anonymous commu-
nication tool composability, and 4) transparent use
of scrubbing tools.

2. GLOOM AND DOOM
While well-designed communication tools may not

directly leak identifying information, the environ-
ment in which the tools run and their usage model
may enable an adversary to identify a user. In this
section, we give many motivating scenarios in which
layman and even expert configurations could be ex-
ploited and leak information.
An application leak may occur as soon as a user

begins their communication session if the applica-
tion shares their public IP address over the com-
munication channel. P2P applications, like BitTor-
rent, share all network information to improve con-
nectivity. Similarly, the Flash plugin ignores Web
browser proxy settings and directly accesses content,
which can unintentionally bypass an anonymizing
layer such as Tor.
A user who shares their own content with oth-

ers may be a victim of a user information leak.
Many applications embed personally identifiable in-
formation within the metadata of files, for exam-
ple, Microsoft Word and many other word process-
ing applications contain a document author’s name
among other personal information. Various image
formats contain information that include the cam-
era that took the picture as well as GPS coordi-
nates. A whistle-blower could be uploading content
that has been steganographically embedded with a
unique marker revealing his identity.
Web sites and networked applications can obtain

a significant amount of local machine information in-
cluding network setup, display resolution and color
depth, processor speed and architecture, installed
software and libraries, RAM, total and available disk
space, historical content such as cookies for web brows-
ers and previous user names, identities, and activi-
ties for applications, even the user’s current time [9].
When considered together, these properties may be
enough to establish a unique fingerprint. A power-
ful adversary could use this information in an inter-
section attack [16] to identify the user’s real identity.
In the Pown2Own competition, teams work to-

gether in order to show that existing technologies
have remote exploits giving direct access to the
user’s machine over the network. A knowledgeable
adversary could exploit zero-day flaws in order to
gain access to a users machine and identify that user
by the content on his computer. Similarly, an ad-
versary can obtain the machine physically through
confiscation and snoop through all files on the ma-
chine in an effort to link the owner to a particular
online pseudonym.
Once an adversary has unmasked a user in one

context, the user may be susceptible to losing their
anonymity in another as a result of a correlation

attack. In existing systems, an adversary using a

2

remote exploit to gain access to the user’s machine
can easily unmask all anonymous communication
channels beyond the context in which the exploit oc-
curred. Similarly, if a user has been deanonymized
by accidentally leaking personal information across
a Tor circuit, any other traffic within that circuit
would also lose anonymity.

3. WiNoN ARCHITECTURE
Despite this bleak situation, there remains hope:

WiNoN. As shown in Figure 1, WiNoN consists of
a single web browser supporting nym-browse, which
separates each independent browser activity or nym
into secure domains to eliminate many of these leaks.
Each secure domain consists of a unique Sandbox
that stores quasi-persistent browser state and con-
nects to the Internet through one or more anonym-
ity or circumvention tools each running in their own
CommVM (communication virtual machine). WiNoN
provides access to the local storage, i.e., the local
hard disk and USB devices; however, read data trans-
parently passes through a filter, automatically scrub-
bing it of personal identifying material.

3.1 Pseudonyms
While having an active web brower connected to

webmail, a user may want to post a sensitive content
to a message board. If done within the same WiNoN
Sandbox, an adversary need only find a common fin-
gerprint between the two to correlate the two behav-
iors to the same user. Even a fully clean browser may
eventually obtain state, such as cookies or javascript
calls, that can correlate a user across distinct anony-
mous channels. WiNoN uses nym-browse to sepa-
rate each activity into distinct pseudonyms or nyms
consisting of an independent Sandbox environment
connected to its own independent set of CommVMs.
Only an individual directly looking at the screen of
a WiNoN system would be able to determine that a
user checking webmail is the same as one posting to
a message board.
We are investigating various approaches to solving

this challenge. One approach would be to execute
browsers in each VM and redirect the output via
VNC to a common “web brower.” Another, perhaps
more user-friendly alternative would be a WiNoN-
specific browser that runs in a client-server mode.
Each server would run inside a Sandbox, translating
requests into binary data transferring it upstream to
the client, “web browser,” which would translate the
data into a visible web page. This approach would
enable WiNoN to minimize the memory consump-
tion of each Sandbox and latency overheads induced
by VNC. However, this sets forth a significant chal-

lenge: the ability to use existing web browsers and
their plugins.
Another design consideration is whether to use an-

onymity tools built-in support for pseudonyms, e.g.
Tor [7] and Dissent [31], or to execute them in sep-
arate CommVMs. A single instance of Tor supports
this by adding additional SOCKS5 proxy server end-
points, while Dissent would require trivial, client-
side modifications or simply running parallel Dissent
instances each with unique SOCKS5 proxy server
endpoints. While the unique CommVM model may
be heavy weight, the shared model could result in an
easy correlation attack upon the compromise of an
instance of the anonymity tool. Although arguably,
if a tool can be compromised, perhaps then parallel
instances are not safe anyway.
Finally, is this approach sufficient? Instead of web

browsing, should we be considering applications in
general? Alternatively, we could consider an operat-
ing system engineered from the ground up to ensure
and perserve anonymity even for applications that
were not originally configured for WiNoN, like the
WiNoN browser.

3.2 Secure, Modular Communication
Without careful construction, adversaries can com-

promise an entire system from even the smallest
opportunity. To prevent or mitigate an adversary
from taking over a WiNoN system and avoid appli-
cation leakage despite buggy applications, improp-
erly configured tools, or accidentally installed tro-
jans, WiNoN embraces a framework for secure, mod-
ular communication. Our framework requires that
each session and even its individual components be
completely independent from each other and the un-
derlying host. The approach ensures that even if an
adversary compromises any component within a sin-
gle session, he would be unable to extend into other
unrelated sessions, gain access to the host system,
or, in the case of the Sandbox, circumvent anony-
mous communication tools.
To support this goal, WiNoN makes extensive use

of virtualization with unique virtual machines (VMs)
for each Sandbox and for each of the communication
tools running in independent CommVMs. While
other solutions may be possible, virtualization al-
lows WiNoN to run existing applications and com-
munication tools without modification. Within a
WiNoN environmment, hypervisor handles message
forwarding between the Sandbox and its immedi-
ate upstream CommVM, and each CommVM has
the necessary communication access to its immedi-
ate downstream and upstream connections whether
that be the Sandbox, another CommVM, or a NAT

3

running on the hypervisor. The NAT on the hyper-
visor connects the final CommVM in the serial link
to the hosts network interface card (NIC) and thus
to the Internet. Effectively, each VM has no knowl-
edge of other networks except those shared on the
downstream and upstream limiting the Sandboxes
exposure and access to underlying communication
tools as well as the local network.
Developers adding support for a tool to WiNoN

need only focus on selecting the input device or the
communication path into their tool and configuring
their tool to use the appropriate output NIC. Using
this model, a user can then select from any num-
ber of tools to compose a powerful combination of
circumvention and anonymous communication tools.
As of now, WiNoN already supports an array of
mechanisms for tunneling communication. In the
most simplistic form, incognito mode, the Sandbox
directly speaks to the NAT running on the hyper-
visor preventing the Sandbox from directly access-
ing the LAN and confining state to the Sandbox.
A member requiring network anonymity may desire
to use Tor [7], an anonymous onion routing tool,
but also needs to leverage a circumvention tool like
SWEET [14], IP over e-mail, to bypass restrictions
made by his ISP preventing direct usage of Tor. Al-
ternatively, he may reside in a wireless network with
other Tor users and run Tor over Dissent [31], an
anonymous group communication tool, to eliminate
certain intersection attacks [2, 18, 24]. Even tools
like Freewave [13] that use audio devices to evade
network firewalls via Skype can be used seamlessly
in WiNoN.

3.3 Quasi-Persistent Data
As the user installs applications, collects Web cook-

ies, and develops other fingerprints, he establishes a
unique identity that could be used for intersection
attacks. To protect users from adversaries, WiNoN,
like Tails [26], carries no state or exhibits signs of
amnesia across boots. In other words, every use
boots as if it was the first, and hence all sandboxes
remain the same regardless how frequently a single
member uses the system. An amnesiac system pre-
vents persecution due to confiscation of user hard-
ware, as there would be no way to directly tie any
session to a specific computer, once a computer has
been turned off.
Although attractive, amnesiac systems lack some

user-friendliness and can do nothing to inhibit in-
tersection attacks against a user that has a common
behavior, e.g., accesses the same IRC channel with
the same nickname at the same time every day. Gen-
erally, users may desire to keep this content, such as

bookmarks, usernames and passwords, or applica-
tion preferences. WiNoN addresses this through the
use of quasi-persistent data, which moves the user’s
data away from the computer while not in use, with
the intent of preventing confiscation attacks, akin to
what CleanOS [28] does, although with plausible de-
niability in mind. Possible solutions include hidden
and encrypted partitions on the local disk, encrypted
USB disks stored independent of the computer in
use, or the cloud. When starting a new session, users
would be prompted to specify the source of the data
and perhaps a key for decrypting it. WiNoN then
populates the home directory within the Sandbox
environment for this session.
The cloud storage solution potentially provides

strong plausible deniability, as a user storing their
data into a free storage cloud such as such as Drop-
Box or Google Drive, cannot be easily connected
with their data once the WiNoN session disconnects.
As we currently envision, at the beginning of a ses-
sion, the user connects through an anonymity ser-
vice to access data stored in an anonymous cloud
account, perhaps created during the first execution
of this pseudonym, and uses this data to populate
the current WiNoN instance. A cloud provider can-
not discern content storing WiNoN data versus some
other encrypted data. Even if the cloud provider
could identify WiNoN data, the cloud would have no
means to determine the content unless it were able to
break the encryption scheme securing it. Meanwhile,
an adversary can only determine linkage between the
content if he can correlate access to specific data
within a cloud to a WiNoN session, in other words,
the adversary would need both extensive if network
presence and access to privileged cloud resources.
To make this environment even more secure, no

persistent data from a nym should remain on a com-
puter once the use of the nym has been discontin-
ued. As designed, however, WiNoN currently re-
tains traces of that state until reboot. Recent work
by Dunn [8] explores how much information remains
on a host after a virtual machine has shut down
as well as various methods for eliminating it. This
may work well for WiNoN; however, such approach
requires some specialized hardware and additional
computational overhead, perhaps erasing the Sand-
boxes allocated memory before boot and after shut-
down would be sufficient.

3.4 Automated Data Scrubbing
The purpose of using circumvention or anonymous

communication tools usually involves more than ac-
cessing Web content. For example, users may want
to distribute content from non-anonymous sources,

4

e.g., posting photos from their digital camera. Naively
transferring these files will likely leak the user’s or
some confidant’s identity [5, 6]. WiNoN plans to
eliminate this possibility by automatically stripping
files of potentially identifying material by using ap-
propriate tools [1, 3, 25, 29]. Such an approach
comes with caveats. This is an arms race, devel-
opers continuously come up with new file types and
malicious individuals find new ways to exploit these
and existing file types. Additionally, users need to
be aware that an automated scrubber does not give
the user the license to not verify that the file does
not contain personally identifiable information, such
as a signature in a word document or their image
in a picture. Of course this opens up other oppor-
tunities for advanced filtering, such as automated
or WiNoN-assisted blurring of faces in images and
support for removing watermarks.
For now, we have contemplated two approaches

to integrating this into the system. The more desir-
able, although perhaps more difficult to build cor-
rectly approach involves actually mounting the local
storage systems within the same environment as the
web browser, except that all files would be filtered
upon access. Alternatively, a more obviously secure
mode, which we have already implemented uses a
separate VM hosting the local data. Within this
VM, a user can access any content and copy it to a
specific directory, causing an automated scrubbing,
and making it available in a read-only environment
to the web browser or to a specific nym within the
browser.
The reverse path, or storing content from the web

session for later use outside of WiNoN, has similar
considerations. One such approach would be to host
a write-only directory for each nym with contents
stored therein passing through the same scrubbing
tools as the outgoing content as well as a virus scan-
ner to protect the user prior to actually storing it to
an external drive. Regardless of the eventual solu-
tion, write support opens up a significant potential
for accidents.

4. PROTOTYPE IMPLEMENTATION
We have implemented an early prototype WiNoN

system that supports a single active pseudonym, com-
posable CommVMs, and the beginnings of the auto-
mated data scrubber. Currently, WiNoN supports
Tor, Dissent, SWEET, and the incognito mode to
connect users to the Internet. KVM [22], a virtu-
alization solution built directly into the Linux ker-
nel, provides the infrastructure for hosting VMs. We
use iptables in the hypervisor to limit network ac-
cess for the CommVMs and Sandbox as well as to

provide Internet to the final hop in the CommVM.
For communication tools that use SOCKS5, we em-
ploy iptables in conjunction with redsocks to move
packets from the network stack and into these ap-
plications. We chose to use AUFS [19] for stacking
file systems together because it comes bundled with
the Linux Kernel included in Ubuntu, our current
base distribution. To simplify management of the
different VMs, their contents are directly accessible
as host folders in the base image and are mounted
into the VM at run-time using KVM’s VirtFS [15].
The sanitization VM hosts a VirtFS folder, the

hypervisor listens for creation of new files in that
directory using inotify. For each new file, it is im-
mediately copied into a temporary directory. Then
a bash script checks for a file type using the Linux
command “file” and runs an appropriate scrubber.
The resulting scrubbed file is passed into another
VirtFS folder mounted in the sandbox. Files with-
out scrubbers use the default policy, delete. In a
production level environment, we may either leave
this as a run time option or to delete the file.

4.1 Validating the System
We developed and validated the WiNoN prototype

using KVM and nested virtualization. This process
made it easy to verify the state of the system and
inspect for potential information leaks. To check
for leaks, we connected the WiNoN hypervisor to a
VNIC NATed to the host. On the host device, we ran
Wireshark and inspected traffic entering and exiting
an idle WiNoN client. While using Ethernet, the
WiNoN hypervisor emitted only traffic for DHCP
and WiNoN traffic, while the sandbox transmitted
no traffic. The same image we used in KVM can be
directly copied to a USB flash drive and booted on
any machine that supports USB boot.
To enforce amnesia, WiNoN uses a stackable file

system to merge multiple physical file systems into
a single virtual file system. Both the hypervisor and
all VMs share a common, read-only, base file sys-
tem embodying a standardized configuration. With
modern Linux distributions packing on the pounds,
this enables us to ship WiNoN on 1 GB USB drives
and even 650 MB cd-roms using standard distri-
butions without sacrificing applications or spending
time tweaking the distribution for size. The am-
nesiac read-write portion resides in RAM, ensuring
that the sandbox starts fresh after each reboot.

4.2 Preliminary Experiences
To give a taste of the WiNoN experience, we per-

formed a series of experiments using both the real
Tor network and a mock Dissent network. We were

5

Kernel Google Peacekeeper Memory

Native Tor 1179 S 4.3 S 1386 158M

WiNoN Tor 885 S 11.3 S 1191 830M

Native Dissent 60.2 S 1.29 S 1387 185M

WiNoN Dissent 52.2 S 2.6 S 1184 855M

Table 1: Comparison of communication tools run-
ning natively and within WiNoN.

particularly interested in how the use of virtualiza-
tion impact their experience. The evaluation ran on
an Intel I3 laptop with virtualization extensions con-
nected to a university wireless network and consisted
of downloading the Linux kernel, the index.html of
www.google.com, running a Javascript benchmark,
Peacekeeper [12], and the total amount of RAM in
use. Each test investigates different overheads: down-
loading Linux kernel bandwidth, retrieving Google’s
index.html latency, and running Peacemaker CPU.
We present the results for the different combinations
in Table 1. Peacekeeper produces an integer score,
whereas the download times are in seconds.
Overall we were quite happy with the results, vir-

tualization impacts the Peacekeeper task by less than
20% and Dissent exhibited some latency and band-
width overheads when run in WiNoN. Another VM
associated network overheads occurs when obtaining
the first byte. We believe this relates to perform-
ing DNS queries directly via a SOCKS5 request as
opposed to inline as the web browser does when it
interacts directly with the SOCKS5 proxy. While
WiNoN made use of a significant chunk of memory,
we are confident that with better page sharing and
a lighter-weight OS for CommVMs, the number will
be much more respectable.
Comparisons between Dissent and Tor are not di-

rectly comparable. Tor uses a real, heavily loaded
network, whereas Dissent runs on top of a well-provisioned,
lightly loaded, synthetic test configuration. Further-
more, each evaluation was executed only 3 times and
while the current results favor Tor in WiNoN, a suf-
ficient number of executions would eventually favor
native Tor just as native Dissent.

5. DISCUSSION

5.1 The Enemy Within
The WiNoN model depends on the sterility of

both hardware and software. A malicious party could
easily install malware into the hypervisor prior to
distribution or in the firmware of WiFi devices prior
to a party in order to compromise a user’s ano-
nymity. Using trusted platform modules could po-
tentially ensure the running software and firmware;
however, all is for naught if the hardware vendor has
conspired with the adversary.

5.2 Lack of Perfect Homogeneity
Even while using virtualization and the same set

of software, there still exists the possibility for dif-
ferences between users. An adversary could execute
a particularly CPU intensive application, such as a
javascript application that computes a million digits
of PI, and use the timings to produce a fingerprint
for that user. Also, all users cannot necessarily be
in the same location, and hence if there is a single
Tor user in Repressistan, the government-owned ISP
could easily determine the responsible party for any
Repressistani traffic related to Tor.

5.3 Self-Deanonymizing Users
A reckless user can easily deanonymize himself

in most anonymity systems, while WiNoN goes to
great lengths to prevent such accidents, there ex-
ist some limitations. In WiNoN, for example, if a
user shares personal information while signing an
anonymous petition, by providing a personal e-mail
account, WiNoN like most other systems would be
unable to prevent this type of accident. However,
because of nym-browse, a user need not worry about
correlation attacks wherein they deanonymize a sin-
gle nym instance. Specifically, if a user were to
browse their Facebook or personal webmail account
in one tab and access sensitive material in another,
the adversary would be unable to link this material
together. In systems like Tails and Whonix, such
behavior might instantly deanonymize the user.

5.4 Concealing Network Identity
Network identity proves difficult even in the WiNoN

context. Network fingerprinting comes in many forms
from operating system interfaces to NIC devices [20],
drivers [11], MAC addresses, and even the hardware
characteristics of devices [4]. Some of these attacks
are avoidable using a common device with a stan-
dardized driver, a volatile management framework
for the device, and randomized MAC addresses.
For well-equipped adversaries, this approach is in-

sufficient. Brik et al. [4] determined that even de-
vices from the same manufacturer with sequential
serial numbers could be fingerprinted due to the er-
rors in the signal. Since we envision that WiNoN
may be used in moderately well-organized groups,
we posit that users could organize WiFi device ex-
change parties, or WiFi social mixes, akin to Richard
Stallman’s “Charlie Card” swapping parties [23] to
elude RFID-based fingerprinting.

6. CONCLUSIONS
WiNoN addresses accidental information leakage

in anonymous communication systems from a “whole-

6

www.google.com

system” perspective, seeking structural solutions based
on isolation, homogeneity, and limited flexibility. En-
forced anonymization, in combination with virtu-
alization and homogeneity, offers some protection
from even a compromised WiNoN sandbox leaking
personally identifiable information. While merely a
start, we believe WiNoN offers a useful platform for
researching these problems.

Acknowledgments
This material is based upon work supported by the
Defense Advanced Research Agency (DARPA) and
SPAWAR Systems Center Pacific, Contract No. N66001-
11-C-4018. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of DARPA or SPAWAR.

7. REFERENCES
[1] T. Aura, T. A. Kuhn, and M. Roe. Scanning

electronic documents for personally identifiable
information. In 5th ACM workshop on Privacy
in electronic society (WPES), pages 41–50,
New York, NY, USA, 2006. ACM.

[2] K. Bauer, D. McCoy, D. Grunwald, T. Kohno,
and D. Sicker. Low-resource routing attacks
against Tor. In 6th Workshop on Privacy in
the Electronic Society (WPES), pages 11–20,
Oct. 2007.

[3] E. Bier, R. Chow, P. Golle, T. King, and
J. Staddon. The rules of redaction: Identify,
protect, review (and repeat). Security Privacy,
IEEE, 7(6):46 –53, nov.-dec. 2009.

[4] V. Brik, S. Banerjee, M. Gruteser, and S. Oh.
Wireless device identification with radiometric
signatures. In ACM International Conference
on Mobile Computing and Networking
(MobiCom), pages 116–127, 2008.

[5] S. Byers. Information leakage caused by
hidden data in published documents. IEEE
Security and Privacy, 2:23–27, 2004.

[6] A. Castiglione, A. D. Santis, and C. Soriente.
Taking advantages of a disadvantage: Digital
forensics and steganography using document
metadata. Journal of Systems and Software,
80(5):750 – 764, 2007.

[7] R. Dingledine, N. Mathewson, and
P. Syverson. Tor: the second-generation onion
router. In Proceedings of the 12th USENIX
Security Symposium, Aug. 2004.

[8] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim,
M. Silberstein, Y. Xu, V. Shmatikov, and
E. Witchel. Eternal sunshine of the spotless
machine: Protecting privacy with ephemeral

channels. In USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), 2012.

[9] P. Eckersley. How unique is your web browser?
In Privacy-Enhancing Technologies
Symposium, July 2010.

[10] G. Fleischer. Attacking tor at the application
layer. http://ww.defcon.org/images/
defcon-17/dc-17-presentations/

defcon-17-gregory_fleischer-attacking_

tor.pdf, July 2009.
[11] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe,

J. Van Randwyk, and D. Sicker. Passive data
link layer 802.11 wireless device driver
fingerprinting. In USENIX Security
Symposium, 2006.

[12] Futuremark. Peacekeeper – the universal
browser test. http://peacekeeper.
futuremark.com, January 2013.

[13] A. Houmansadr, T. Riedl, N. Borisov, and
A. Singer. I Want my Voice to be Heard: IP
over Voice-over-IP for Unobservable
Censorship Circumvention. In Network and
Distributed System Security Symposium, 2013.

[14] A. Houmansadr, W. Zhou, M. Caesar, and
N. Borisov. Sweet: Serving the web by
exploiting email tunnels. CoRR,
abs/1211.3191, 2012.

[15] V. Jujjuri, E. V. Hensbergen, A. Liguori, and
B. Pulavarty. Virtfs–a virtualization aware file
system pass-through. June 2010.

[16] D. Kedogan, D. Agrawal, and S. Penz. Limits
of anonymity in open environments. In 5th
International Workshop on Information
Hiding, Oct. 2002.

[17] J. Mickens and M. Dhawan. Atlantis: Robust,
extensible execution environments for web
applications. In 23rd ACM Symposium on
Operating System Principles (SOSP), Oct.
2011.

[18] S. J. Murdoch and P. Zieliński. Sampled traffic
analysis by Internet-exchange-level adversaries.
In 7th Privacy Enhancing Technologies
Symposium (PETS), pages 167–183, 2007.

[19] J. R. Okajima. Aufs3 – advanced multi layered
unification filesystem version 3.3. http://
aufs.sourceforge.net/, January 2013.

[20] J. Pang, B. Greenstein, R. Gummadi,
S. Seshan, and D. Wetherall. 802.11 user
fingerprinting. In ACM International
Conference on Mobile Computing and
Networking (MobiCom), pages 99–110, 2007.

[21] M. Perry. To toggle, or not to toggle: The end
of torbutton. https://blog.torproject.

7

http://ww.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-gregory_fleischer-attacking_tor.pdf
http://ww.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-gregory_fleischer-attacking_tor.pdf
http://ww.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-gregory_fleischer-attacking_tor.pdf
http://ww.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-gregory_fleischer-attacking_tor.pdf
http://peacekeeper.futuremark.com
http://peacekeeper.futuremark.com
http://aufs.sourceforge.net/
http://aufs.sourceforge.net/
https://blog.torproject.org/blog/toggle-or-not-toggle-end-torbutton

org/blog/

toggle-or-not-toggle-end-torbutton,
May 2011.

[22] Qumranet. Kernel-based virtual machine for
linux. http://kvm.qumranet.com/kvmwiki,
March 2007.

[23] J. Sedgwick. The shaggy god. http://www.
bostonmagazine.com/articles/2008/04/

the-shaggy-god/, May 2008.
[24] A. Serjantov and P. Sewell. Passive-attack

analysis for connection-based anonymity
systems. International Journal of Information
Security, pages 172–180, 2005.

[25] L. Sweeney. Replacing personally-identifying
information in medical records, the scrub
system. Journal of the American Medical
Informatics Association, 1996.

[26] Tails: The amnesic incognito live system,
September 2012. https://tails.boum.org/.

[27] S. Tang, H. Mai, and S. T. King. Trust and
protection in the illinois browser operating
system. In 9th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), Oct. 2010.

[28] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. Cleanos: limiting
mobile data exposure with idle eviction. In
USENIX Symposium on Operating Systems
Design and Implementation, Oct. 2012.

[29] J. Voisin, C. Guyeux, and J. M. Bahi. The
metadata anonymization toolkit. http://
arxiv.org/abs/1212.3648, may 2013.

[30] Whonix. http://sourceforge.net/p/whonix.
[31] D. Wolinsky, H. Corrigan-Gibbs, B. Ford, and

A. Johnson. Scalable anonymous group
communication in the anytrust model. In
European Workshop on System Security
(EuroSec), Apr. 2012.

8

https://blog.torproject.org/blog/toggle-or-not-toggle-end-torbutton
https://blog.torproject.org/blog/toggle-or-not-toggle-end-torbutton
http://kvm.qumranet.com/kvmwiki
http://www.bostonmagazine.com/articles/2008/04/the-shaggy-god/
http://www.bostonmagazine.com/articles/2008/04/the-shaggy-god/
http://www.bostonmagazine.com/articles/2008/04/the-shaggy-god/
https://tails.boum.org/
http://arxiv.org/abs/1212.3648
http://arxiv.org/abs/1212.3648
http://sourceforge.net/p/whonix

	1 Introduction
	2 Gloom and Doom
	3 WiNoN Architecture
	3.1 Pseudonyms
	3.2 Secure, Modular Communication
	3.3 Quasi-Persistent Data
	3.4 Automated Data Scrubbing

	4 Prototype Implementation
	4.1 Validating the System
	4.2 Preliminary Experiences

	5 Discussion
	5.1 The Enemy Within
	5.2 Lack of Perfect Homogeneity
	5.3 Self-Deanonymizing Users
	5.4 Concealing Network Identity

	6 Conclusions
	7 References

