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ABSTRACT

The security of any cryptosystem relies on the secrecy of the
system’s secret keys. Yet, recent experimental work demon-
strates that tens of thousands of devices on the Internet use
RSA and DSA secrets drawn from a small pool of candidate
values. As a result, an adversary can derive the device’s
secret keys without breaking the underlying cryptosystem.
We introduce a new threat model, under which there is a
systemic solution to such randomness flaws. In our model,
when a device generates a cryptographic key, it incorporates
some random values from an entropy authority into its cryp-
tographic secrets and then proves to the authority, using
zero-knowledge-proof techniques, that it performed this op-
eration correctly. By presenting an entropy-authority-signed
public-key certificate to a third party (like a certificate au-
thority or SSH client), the device can demonstrate that its
public key incorporates randomness from the authority and
is therefore drawn from a large pool of candidate values.
Where possible, our protocol protects against eavesdrop-
pers, entropy authority misbehavior, and devices attempt-
ing to discredit the entropy authority. To demonstrate
the practicality of our protocol, we have implemented and
evaluated its performance on a commodity wireless home
router. When running on a home router, our protocol in-
curs a 1.7× slowdown over conventional RSA key generation
and it incurs a 3.6× slowdown over conventional EC-DSA
key generation.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.2 [Computer-Communication
Networks]: Network Protocols—Applications; E.3 [Data
Encryption]: Public key cryptosystems
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1. INTRODUCTION
A good source of randomness is crucial for a number of

cryptographic operations. Public-key encryption schemes
use randomness to achieve chosen-plaintext security, key-
exchange algorithms use randomness to establish secret ses-
sion keys, and commitment schemes use randomness to hide
the committed value. The security of these schemes relies on
the unpredictability of the random input values, so when the
“random” inputs are not really random, dire security failures
result [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
26, 29, 32, 41].

Although the dangers of weak randomness have been part
of the computer security folklore for years [26], entropy fail-
ures are still commonplace. In 2008, a single mistaken patch
caused the OpenSSL distribution in all Debian-based oper-
ating systems to use only the process ID (plus a few other
easy-to-guess values) as the seed for its pseudo-random num-
ber generator. This bug caused affected machines to select a
1024-bit RSA modulus from a pool of fewer than one million
values, rather than the near-21000 possible values [41]. By
replaying the key generation process using each of the one
million possible PRNG seeds, an adversary could recover the
secret key corresponding to one of these weak public keys in
a matter or hours or days.

Recent surveys [29, 32] of SSH and TLS public keys on
the Internet demonstrate that hardware devices with poorly
seeded random number generators have led to a prolifer-
ation of weak cryptographic keys. During the drafting of
this paper, NetBSD maintainers discovered a bug caused by
a “misplaced parenthesis” that could have caused NetBSD
machines to generate cryptographic keys incorporating as
few as 32 or 64 bits of entropy, instead of the 100+ ex-
pected bits [36]. Even more recently, a PRNG initialization
bug in the Android operating system could have caused ap-
plications using the system to generate weak cryptographic
keys [31].

Randomness failures continue to haunt cryptographic soft-
ware for a number of reasons: the randomness “stack” in a
modern operating system [39] is large and complex, there is
no simple way to test whether a random number generator
is really generating random numbers, and (at least in the



context of cryptographic keys) there has never been a sys-
temic solution to the randomness problem. The response to
entropy failures has traditionally been ad hoc: each device
manufacturer or software vendor patches RNG-related bugs
in its own implementation (once discovered), without de-
ploying techniques to prevent similar failures in the future.
The quantity and severity of randomness failures suggests
that this “fix the implementation” approach is grossly insuf-
ficient.
We offer the first systemic solution to the entropy problem

in cryptographic key generation for public-key cryptosys-
tems. In our protocol, a device generating a cryptographic
keypair fetches random values from an entropy authority
and incorporates these values into its cryptographic secrets.
The device can later prove to third parties (e.g., a certifi-
cate authority or an SSH client) that the device’s secrets
incorporate the authority’s random values, thus guarantee-
ing that the device’s cryptographic keys are selected from
a large enough pool of candidate values. Unlike certificate
authorities in today’s Internet, our entropy authorities are
not trusted third parties: if the device has a strong entropy
source, a malicious entropy authority learns no useful infor-
mation about the device’s secret key. We present versions of
our protocol for RSA and DSA key generation and we offer
proofs of security for each.
A subtlety of our solution is the threat model: under a

traditional “global passive adversary” model, the adversary
can completely simulate the view of a device that has a very
weak entropy source. Thus, under the global passive adver-
sary model, a device with a weak entropy source has no hope
of generating strong keys. We propose an alternate threat
model, in which the adversary can observe all communica-
tion except for one initial communication session between
the device and the entropy authority. Under this more lim-
ited adversary model, which is realistic in many deployment
scenarios, we can take advantage of an entropy authority to
ensure the randomness of cryptographic keys.
The key generation protocols we present are useful both

for devices with strong and weak entropy sources. In par-
ticular, if the device has a strong entropy source (the device
can repeatedly sample from the uniform distribution over a
large set of values), running the protocol never weakens the
device’s cryptographic keys. In contrast, if the device has
a weak or biased entropy source, running the protocol can
dramatically strengthen the device’s keys by ensuring that
its keys incorporate sufficient randomness. The device need
not know whether it has a strong or weak entropy source:
the same protocol is used in both cases.
A recent survey of public keys [29] suggests that embed-

ded devices are responsible for generating the majority of
weak cryptographic keys on the Internet. To demonstrate
that our protocols are practical even on this type of com-
putationally limited network device, we have evaluated the
protocols on a $70 Linksys home router running the dd-
wrt [22] operating system. Our RSA key generation protocol
incurs less than a 2× slowdown on the Linksys router when
generating a 2048-bit key, and our RSA and DSA protocols
incur no more than 2 seconds of slowdown on a laptop and a
workstation. The DSA version of our protocol is compatible
with both elliptic-curve and finite-field groups. Our proto-
cols generate standard RSA and DSA keys which are, for a
given bit-length, as secure as their conventionally generated
counterparts.

In prior work, Juels and Guajardo [30] present a proto-
col in which a possibly malicious device generates an RSA
key in cooperation with a certificate authority. Their proto-
col prevents a device from generating an ill-formed keypair
(e.g., an RSA modulus that is the product of more than two
primes). We consider a different threat model. We ensure
that a device samples its keys from a distribution with high
min-entropy, but we do not prevent the device from gen-
erating malformed keys. Under this new threat model, we
achieve roughly a 25× performance improvement over the
protocol of Juels and Guajardo (as measured by the number
of modular exponentiations that the device must compute).
Section 7 compares the two protocols and discusses other
related work.

After introducing our threat model in Section 2, we de-
scribe our key generation protocols in Section 3 and present
security proofs in Section 4. Section 5 summarizes our eval-
uation results and Section 6 discusses issues related to inte-
grating our protocols with existing systems.

1.1 Why Other Solutions Are Insufficient
Before describing our protocol in detail, we discuss a few

other possible, but unsatisfactory, ways to prevent networked
devices from using weak cryptographic keys.1

Possible Solution #1: Fix the implementation. One
possible solution to the weak key problem is to simply make
sure that cryptography libraries properly incorporate ran-
dom values into the cryptographic secrets that they produce.
Unfortunately, bugs and bad implementations are a fact of
life in the world of software, and the subtleties of random
number generation make randomness bugs particularly com-
mon. Implementations that seed their random number gen-
erators with public or guessable values (e.g., time, process
ID, or MAC address) [8, 15, 16, 18, 18], implementations
that use weak random number generators [10, 11, 12, 20,
21], and implementations without a good source of environ-
mental entropy [29] are all vulnerable.

The complexity of generating cryptographically strong ran-
dom numbers, the overwhelming number of randomness fail-
ures in deployed software, and the difficulty of detecting
these failures during testing all indicate that “fix the imple-
mentation” is an insufficient solution to the weak key prob-
lem. Given that some implementations will be buggy, there
should be a way to assure clients that their TLS and SSH
servers are using strong keys, even if the client suspects that
the servers do not have access to a good source of random
values.

Possible Solution #2: Simple entropy server. A sec-
ond possible solution would be to have devices fetch some
random values from an“entropy sever”and incorporate these
values (along with some random values that the device picks)
into the device’s cryptographic secrets. As long as the ad-
versary cannot observe the device’s communication with the
server, the server would provide an effective source of envi-
ronmental entropy.

One problem with this approach comes in attributing blame
for failures. If a device using an entropy server produces

1By weak keys we mean keys sampled from a distribution
with much less min-entropy than the user expects. For ex-
ample, a 224-bit EC-DSA key sampled from a distribution
with only 20 bits of min-entropy is weak.



weak keys, the device might blame the entropy server for
providing it with weak random values. In turn, the entropy
server could claim that it provided the device with strong
random values but that the device failed to incorporate them
into the device’s cryptographic secrets. Without some addi-
tional protocol, a third party will not be able to definitively
attribute the randomness failure to either the device or the
entropy server.

Possible Solution #3: Key database. A third possi-
ble technique to prevent devices from using weak keys would
be to deploy a “key database” that contains a copy of every
public key on the Internet. A non-profit organization could
run this database, much as the Electronic Frontier Founda-
tion maintains the SSL Observatory [23], a static database
of public keys on the Internet.
Whenever a device with a potentially weak entropy source

generates a new keypair, the device would send its new pub-
lic key to the key database. If the database already contains
that key (or if the database contains an RSA modulus that
shares a factor with the new key), the device would gener-
ate a fresh key and submit it to the database. The device
would continue this generate-and-submit process until find-
ing a unique key. At the end of the process, the device would
be guaranteed to have a key that is unique, at least amongst
the set of keys in the database.
Unfortunately, this proposed solution would obscure the

entropy problem without fixing it. An attacker could replay
the entire key generation process using the known initial
state of a device with a weak entropy source to learn the
secret keys of that device. By creating a centralized database
of (possibly weak) keys, such a solution would make it easier
for attackers to find and compromise weak keys.

2. SYSTEM OVERVIEW
Our proposed solution to the weak key problem, pictori-

ally represented in Figure 1, takes place between a device, an
entropy authority, a certificate authority2 (optionally), and
a client. We describe the roles of each of these participants
before outlining our threat model and the security properties
of the scheme.

2.1 Participants

Device. The device is the entity generating the RSA or
DSA keypair that we want to ensure is sufficiently random,
even if the device does not have access to a strong internal
entropy source. The device might be an embedded device
(e.g., a commodity wireless home router), or it might be a
full-fledged server. The device could use the keypair it gen-
erates to secure HTTPS sessions and to authenticate itself
in SSH sessions.

Entropy authority (EA). The entropy authority is the
participant responsible for ensuring that a device’s keypair is
selected with enough randomness (is sampled independently
from a distribution with high enough min-entropy). Just
as a certificate authority verifies the identifying information
(name, address, etc.) on a user’s public key, the entropy
authority verifies the randomness of a user’s public key.

2IETF documents [5] use the term certification authority but
we will follow common usage and use certificate authority.

Figure 1: Overview of the protocol participants. (1)
The device fetches random values from the entropy
authority, proves to the authority that its key in-
corporates these values, and obtains a signature on
the key from the EA. (2) The device submits its
EA-signed public key to the certificate authority for
signing. (3) The device presents an EA-signed key
to a connecting client to prove that its keypair in-
corporates entropy from the authority.

As the device generates its cryptographic keypair, it fetches
some random values from the entropy authority and then
proves to the entropy authority that it has incorporated
these values into its keypair. The entropy verifies this proof
and then signs the device’s public key. In practice, an en-
tropy authority is just a public Web service with which the
device interacts when the device first generates its a keypair.
We assume that the entropy authority has a strong entropy
source, but that the entropy authority might be malicious.

We imagine a future in which there are a large number
of public entropy authorities on the Internet, run by corpo-
rate IT departments, certificate authorities, universities, and
other large organizations. A device would select its entropy
authority much as users select certificate authorities today:
based on reputation and reliability. To defend against the
failure (or maliciousness) of a single entropy authority, the
device could interact with a number of entropy authorities
to generate a single key, as we describe in Section 6.

Certificate authority (CA). The certificate authority
plays the role of a conventional CA: the certificate authority
confirms that the real-world identity of the device matches
the identity listed in device’s certificate, after which the CA
signs the device’s certificate. In our model, CAs will only
sign certificates that have been signed first by an entropy
authority. In this way, CAs are guaranteed to sign only
public keys that are drawn from a distribution with high
min-entropy. Since many certificates (particularly in em-
bedded devices) are self-signed, the CA is an optional entity
in our protocol.

Client. The client is anyone who connects to the de-
vice. In our model, the client can ensure that the device has
a sufficiently random public key by verifying the entropy
authority’s signature on the key. Every client keeps a sig-
nature verification key for each entropy authority it trusts,
just as today’s Web browsers maintain a list of public keys
for trusted root CAs.

2.2 Threat Model
Throughout the paper, we say that a device has a strong

entropy source if it can repeatedly sample from the uniform
distribution over some set (e.g., {0, 1}). We say that the
device has a weak entropy source otherwise. A strong key,
for our purposes, is a key independently sampled from a
distribution over the set of possible keys that has at least



k − polylog(k) bits of min-entropy, where k is the security
parameter. In other words, a device generates strong keys
if the probability that the device will generate a particular
public key pk is at most 2−(k−polylog(k)) for all public keys
pk. A weak key is any key that is not strong. We say that
a participant is honest if it performs the protocol correctly
and is dishonest otherwise.
The goal of our protocol is to have the device interact

with the entropy authority in such a way that, after the in-
teraction, the device holds a strong cryptographic key. This
overall goal must be tempered a few realities. In particular,
if a device has a no entropy source (or a very weak entropy
source), then a global eavesdropper can always learn the de-
vice’s secret key.
To see why this is so, consider that a device with no en-

tropy source is just a deterministic process. Thus, the eaves-
dropper could always replay such a device’s interaction with
the entropy authority using the messages collected while
eavesdropping. Thus, there is no hope for a completely
deterministic device to generate keys that a global eaves-
dropper cannot guess.
To circumvent this fundamental problem, we consider in-

stead a two-phase threat model:

1. Set-up phase: In the set-up phase, the device interacts
with the entropy authority in a communication session
that the adversary cannot observe or modify. In
our key-generation protocols, this set-up communication
session consists of two round-trip interactions between
the device and the entropy authority.

2. Long-term communication phase: After the set-up stage
ends, the adversary can observe and tamper with the
traffic on all network links.

This threat model mimics SSH’s implicit threat model: an
SSH client gets one “free” interaction with the SSH server,
in which the SSH server sends its public key to the client.
As long as the adversary cannot tamper with this initial
interaction, SSH protects against eavesdropping and man-
in-the-middle attacks.
Under the adversary model outlined above, our key gen-

eration protocol provides the following security properties:

Protects device from a malicious EA. If the device has
a strong entropy source, then the entropy authority learns
no useful information about the device’s secrets during a
run of the protocol. We prove this property for the RSA
protocol by demonstrating that the entropy authority can
simulate its interaction with the device given only O(log k)
bits of information about the RSA primes p and q. We prove
this property for the DSA protocol by demonstrating that
the entropy authority can perfectly simulate its interaction
with the device given no extra information.

Protects device from CA and client. An honest device
interacting with an honest entropy authority holds a strong
key at the end of a protocol run, even if the device has a
weak entropy source. When the device later interacts with
a certificate authority (to obtain a public-key certificate) or
with a client (to establish a TLS session), the device will
send these parties a strong public key, even if the device has
weak entropy source.

Protects EA from malicious device. If the entropy
authority is honest, then the keys generated by this protocol
will be strong, even if the device is dishonest. Intuitively,
this property states that a faulty device cannot discard the
random values that the entropy authority contributes to the
key generation process.

A consequence of this security property is that a malicious
device can never “discredit” an entropy authority by tricking
the entropy authority into signing a key sampled from a low-
entropy distribution. If a device does try to have the entropy
authority sign a key sampled from a distribution with low
min-entropy (a weak key), the authority will detect that the
device misbehaved and will refuse to sign the key.

A nuance of this property is that the entropy authority will
accept public keys that are invalid, as long as the keys are
sampled independently from a distribution with high min-
entropy. In essence, a faulty device in our protocol can create
keys that are incorrect but random. For example, the device
could pick an composite number as one of its RSA“primes,”
or it could use any number of other methods to “shoot it-
self in the foot” during the key generation process. Since
the device can always compromise its own keypair (e.g., by
publishing its secret key), we do not attempt to protect a
completely malicious device from itself. Instead, we simply
guarantee that any key that the entropy authority accepts
will be drawn independently from a distribution with high
min-entropy.

2.3 Non-threats
Our protocol addresses the threat posed by devices that

use weak entropy sources to generate their cryptographic
keys. We explicitly do not address these other broad vulner-
ability classes:

• Adversarial devices. If the device is completely ad-
versarial, then the device can easily compromise its own
security (e.g., by publishing its own secret key). Ensuring
that such an adversarial device has high-entropy crypto-
graphic keys is not useful, since no connection to such an
adversarial device is secure.

• Faulty cryptography library (or OS). Our protocol
does not attempt to protect against cryptographic soft-
ware that is arbitrarily incorrect. Incorrect software can
introduce any number of odd vulnerabilities (e.g., a tim-
ing channel that leaks the secret key), which we place out
of scope.

• Denial of service. We do not address denial-of-service
attacks by the entropy authority or certificate authority.
In a real-world deployment, we expect that a device facing
a denial-of-service attack by a CA or entropy authority
could simply switch to using a new CA or EA.

3. PROTOCOL
This section describes a number of standard cryptographic

primitives we require and then outlines our RSA and DSA
key generation protocols.

3.1 Preliminaries
Our key generation protocols use the following crypto-

graphic primitives.

Additively homomorphic commitments. We require
an additively homomorphic and perfectly hiding commit-



ment scheme. Given a commitment to x and a commitment
to x′, anyone should be able to construct a commitment to
x+x′ (mod Q) without knowing the values x or x′. Our im-
plementation uses Pedersen commitments [37]. Given public
generators g, h of a group G with prime order Q, and a ran-
dom value r ∈ ZQ, a Pedersen commitment to the value x is
Commit(x; r) = gxhr.3 To ensure that the commitments are
binding, participants must select the generators g and h in
such a way that no one knows the discrete logarithm logg h.
The commitment scheme is additively homomorphic be-

cause the product of two commitments reveals a commit-
ment to x+ x′ (mod Q) with randomness r + r′ (mod Q):

Commit(x+ x′; r + r′) = Commit(x; r)Commit(x′; r)

We abbreviate Commit(x; r) as Commit(x) when the ran-
domness used in the commitment is not relevant to the ex-
position.
Of course, if the device has a weak entropy source the de-

vice will not be able to generate a strong random value r
for use in the commitments. We use randomized commit-
ments to hide a device’s secrets in case the device does have
a strong entropy source. Since a device does not necessar-
ily know whether its randomness source is strong or weak,
we must use the same constructions for devices with both
strong and weak entropy sources.

Public-key signature scheme. We use a standard
public-key signature scheme that is existentially unforge-
able [27]. We denote the signing and verification algorithms
by Sign and Verify.

Multiplication proof for committed values. We use
a zero-knowledge proof-of-knowledge protocol that proves
that the product of two committed values is equal to some
third value. For example, given commitments Cx and Cy

to values x, y ∈ ZQ, and a third product value z ∈ ZQ, the
proof demonstrates that z = xy (mod Q). We denote the
prover and verifier algorithms by π ← MulProve(z, Cx, Cy)
and MulVer(π, z, Cx, Cy).
We implement this proof using the method of Cramer

and Damg̊ard [6]. Written in Camenisch and Stadler’s zero-
knowledge proof notation [4], the multiplication proof proves
the statement:

PoK{x, y, rx, ry, rz :

Cx = gxhrx ∧ Cy = gyhry ∧ gzhrz = (Cx)
yhrz}

Application of the Fiat-Shamir heuristic [24] converts this in-
teractive zero-knowledge proof protocol into a non-interactive
proof in the random-oracle model [2]. When implemented
using a hash function that outputs length-l binary strings,
the non-interactive multiplication proof is l+3⌈log2 Q⌉ bits
long.

Common Public Keys. We assume that all participants
hold a signature verification public-key for the entropy and
certificate authorities.

3.2 RSA Key Generation
The RSA key generation protocol takes place between the

device and the entropy authority. At the end of a successful

3We denote the group order with capital “Q” to distinguish
it from the RSA prime q in n = pq that we use later on.

run of the protocol, the device holds an RSA public modulus
n that is independently sampled from a distribution over Z

that has high min-entropy and the device also holds the
entropy authority’s signature σ on this modulus.

In Section 4.1 we prove that the RSA protocol satisfies
the security properties defined in Section 2.2. In Section 6,
we describe how a device could use this protocol to gener-
ate a self-signed X.509 certificate and how to integrate this
protocol with today’s certificate authority infrastructure.

Parameters. Before the protocol begins, the device and
entropy authority must agree on a set of common system pa-
rameters. These parameters include the security parameter
k, which determines the bit-length of the RSA primes p and
q. For a given value of k, the participants must also agree on
a prime-order group G used for the Pedersen commitments
and zero-knowledge proofs. The prime order Q of the group
G must be somewhat larger than the largest RSA modu-
lus n generated by the protocol, so the participants should
let Q ≈ 22k+100. In addition, participants must agree on
two generators g and h of the group G, such that no one
knows the discrete logarithm logg h. In an implementation
of the protocol, participants could generate g and h using a
shared public hash function. Finally, they also agree on a
small number ∆ (e.g. ∆ = 216) discussed in Section 3.2.1
below.

Since the parameters contain only public values, all de-
vices and entropy authorities could share one set of param-
eters (per key size).

Protocol Description. Figure 2 presents our RSA key
generation protocol. To generate an RSA key, the device
first selects k-bit integers x and y and sends randomized
commitments to these values to the entropy authority. The
entropy authority then selects k-bit integers x′ and y′ at
random and returns these values to the device.

After confirming that x′ and y′ are of the correct length,
the device searches for offsets δx and δy such that the sums
p = x + x′ + δx and q = y + y′ + δy are suitable RSA
primes. That is, p and q must be distinct primes such that
gcd(p − 1, e) = 1 and gcd(q − 1, e) = 1, where e is the
RSA encryption exponent. The device then sets n ← pq,
generates commitments to p and q, and produces a non-
interactive zero-knowledge proof of knowledge π that the
product of the committed values is equal to n. The device
sends n, δx, δy, and the the proof π to the entropy authority.

The validity of the proof π and the fact that the δ val-
ues are less than ∆ convince the entropy authority that the
device’s RSA primes p and q incorporate the authority’s ran-
dom values x′ and y′. At this point, the authority signs the
modulus n and returns it to the device.

3.2.1 Finding Primes p and q

To maintain the security of the protocol, it is important
that the δ values chosen in Step 3 are relatively small—
if the device could pick an arbitrarily large δx value, for
example, the device could set δx ← −x

′, which would make
p = x + x′ − x′ = x, thereby cancelling out the effect of
the random value x′ contributed by the entropy authority.
To prevent the device from “throwing away” the entropy
authority’s entropy in this way, we require that the δ values
be less than some maximum value ∆, which depends on the
security parameter k.



Device Entropy Authority

Step 1

choose x, y
R
←− [2k, 2k+1)

Cx ← Commit(x)
Cy ← Commit(y)

send Cx, Cy
✲ Step 2

choose x′, y′ R
←− [2k, 2k+1)

send x′, y′

✛Step 3

abort if x′, y′ 6∈ [2k, 2k+1)
choose 0 ≤ δx, δy < ∆ s.t.
p← x+ x′ + δx
q ← y + y′ + δy
are distinct primes,
gcd(p− 1, e) = 1, and
gcd(q − 1, e) = 1

abort if no such δx, δy exist

let n← pq

Cp ← Cxg
x′+δx

Cq ← Cyg
y′+δy

π ← MulProve(n,Cp, Cq)

send n, δx, δy, π
✲ Step 4

Cp ← Cxg
x′+δx

Cq ← Cyg
y′+δy

abort if δx, δy /∈ [0,∆) or
n /∈ [22k+2, 22k+4) or

MulVer(π, n, Cp, Cq) 6= 1

σ ← SignEA(n)

send σ
✛Step 5

abort if
VerifyEA(σ, n) 6= 1

public key is (n, e, σ)

Figure 2: RSA Key Generation Protocol

Picking the size of ∆ requires some care: if ∆ is too small,
then there may be no suitable prime p in the range [x+x′, x+
x′ +∆), and the device will have to run the protocol many
times before it finds suitable primes p and q. The value ∆
should be large enough that the protocol will succeed with
overwhelming probability, but not so large that the device
can pick n = pq arbitrarily.
Following Juels and Guajardo [30], if the density of primes

is dprime and the density of these special primes (with gcd(p−
1, q−1, e) = 1 is dspecial, we conjecture that dspecial/dprime =
(e− 1)/e, where e is the RSA encryption exponent (a small
odd prime constant). Under this conjecture and the Hardy-
Littlewood [28] conjecture, Juels and Guajardo demonstrate
that the probability that there is no suitable prime in the

interval [x + x′, x + x′ + ∆) is at most exp(−λ) when ∆ =
λ ln(x+ x′)( e

e−1
) as (x+ x′)→∞. To make this conjecture

concrete: if we take (x + x′) ≈ 21024, the RSA encryption
exponent e = 65537, and require a failure probability of at
most 2−80, then we should set ∆ ≈ 216. In the very unlikely
case that the device fails to find primes p and q in the right
range, the device aborts and re-runs the protocol from the
beginning.

3.2.2 Eliminating Information Leakage

The values δx and δy sent to the entropy authority in
Step 3 of the protocol leak some information about p and q
to the entropy authority. In particular, the authority learns
that the prime gap before p (resp. q) has a width of at least
δx (resp. δy). We argue in Section 4.1 the entropy authority
cannot use this leakage to help it factor the modulus n.

Even so, it is possible to modify the protocol to completely
eliminate this information leakage at some performance cost.
One way to modify the protocol is to require that δx = δy =
0 in Step 3 of the protocol. If the values x + x′ and y + y′

are not prime, the device aborts the protocol and restarts
it from the beginning. Since the probability that a random
k-bit number is a suitable prime is near 1/k for large k, the
device will have to run the protocol approximately k2 times
before it succeeds.

To reduce the number of communication rounds required
for this revised protocol, the device could run the k2 protocol
iterations in parallel. The device would send k2-length vec-
tors of commitments to random values ~x, ~y in Step 1 of the
protocol and the entropy authority would return two vec-
tors ~x′, ~y′ in Step 2 of the protocol, with each vector having
length k2. The device would then iterate over the vectors
until it finds an i such that p← xi + x′

i and q ← yi + y′

i are
distinct primes and gcd(p−1, q−1, e) = 1. If the device fails
to find such primes, it would abort and repeat the process.

3.3 DSA Key Generation
The DSA key generation protocol, which we present in

Figure 3, takes place between a device and the entropy au-
thority.

Parameters. We assume that, before the start of the
protocol, participants have agreed upon an order-q group
G used in the DSA signing process. If the device uses the
elliptic-curve variant of DSA (EC-DSA), then the group G
will be an elliptic curve group selected, for example, from
one of the NIST standard curves [25]. Participants must
also agree upon two public generators, g and h, of the group
G such that no one knows the discrete logarithm logg h.

While we expect most new devices to primarily use EC-
DSA keys, even new devices may also need to generate
finite-field DSA keys for interoperability with legacy devices.
When using the finite-field variant of DSA, the device may
have to generate the parameters of the finite-field DSA group
(a prime modulus p, a group order q, and a generator g)
in addition to its keypair. To do this, the device and en-
tropy authority could agree on a domain parameter seed us-
ing a coin-flipping protocol [3] and then use this shared seed
to generate DSA parameters using the verifiable generation
method specified in the Digital Signature standard [25, Ap-
pendix A].



Device Entropy Authority

Step 1

choose x, rx
R
←− Zq

Cx ← Commit(x; rx)

send Cx
✲ Step 2

choose x′ R
←− Zq

send x′

✛Step 3
a← x+ x′ mod q
A← ga

send A, rx
✲ Step 4

abort if Ahrx 6= Cxg
x′

σ ← SignEA(A)

send σ
✛Step 5

abort if VerifyEA(σ,A) 6= 1

public key is (A, σ)

Figure 3: DSA Key Generation Protocol

Protocol Description. To begin the key generation
process depicted in Figure 3, the device picks a random value
x ∈ Zq and generates a randomized commitment to x. In the
event that the device has a strong entropy source, the use of
a randomized commitment prevents the entropy authority
from learning the device’s secret x. The device sends this
commitment to the entropy authority.
Upon receiving the device’s commitment, the entropy au-

thority chooses a random value x′ ∈ Zq and returns this
value to the device. The device sets its private key a← x+x′

mod q and sets its public key to A ← ga. The device then
sends its public key A along with the randomness rx used
in the commitment to x to the entropy authority.

The entropy authority confirms that Ahrx = Cxg
x′

, which

convinces the entropy authority that A is equal to gx+x′

.
The entropy authority then signs the device’s public key A
and returns it to the device.

4. SECURITY ANALYSIS
This section presents proofs that the RSA and DSA key

generation protocols satisfy the security properties described
in Section 2.

4.1 RSA Protocol

4.1.1 Protects Device from a Malicious EA

We first show that when the device has a strong entropy
source a malicious EA learns no useful information about
the device’s resulting RSA secret key.
First, let us define a standalone RSA modulus genera-

tion algorithm which does not interact with an EA. The key
generator takes as input a security parameter k and lower
bounds pmin and qmin on the RSA primes p and q.

PrimeGen(k, pmin):
choose a random x in [2k, 2k+1]
find the smallest prime p s.t. p ≥ pmin + x
output p

RSAKeyGen(k, pmin, qmin):
p← PrimeGen(k, pmin) , q ← PrimeGen(k, qmin)
output n← p · q

We say that a modulus generator outputs a secure dis-
tribution of RSA moduli n if the resulting family of RSA
functions x → xe mod n is a family of trapdoor one-way
functions (where e is the RSA encryption exponent, a small
prime constant). A secure modulus generator is sufficient for
use in standard RSA encryption and RSA signature systems.

We use the following RSA assumption about algorithm
RSAKeyGen above: algorithm RSAKeyGen(k, pmin, qmin) out-
puts a secure distribution of RSA moduli for all pmin and
qmin in the interval [2k, 2k+1).

The following theorem shows that even when interacting
with a malicious EA, the RSA key generation protocol in
Figure 2 outputs a secure distribution of RSA moduli. Fur-
thermore, the protocol leaks at most O(log k) bits of infor-
mation about the prime factors to the EA. This small leak
does not harm security since if it were possible to invert the
RSA function given the few leaked bits then it would also
be possible to do it without, simply by trying all possible
values for the leaked bits. Moreover, if desired this small
leak can be eliminated at the cost of more computation, as
explained in Section 3.2.2.

Theorem 4.1. Suppose the device has a strong entropy
source (i.e., the device can repeatedly sample independent
uniform bits in {0, 1}). Then for all EA, the protocol in
Figure 2 generates a secure distribution of RSA moduli as-
suming the RSA assumption above. Furthermore, EA’s view
of the protocol can be simulated with at most O(log k) advice
bits with high probability.

Proof. Let A be a malicious EA that, given random
commitments Cx, Cy, outputs (x′, y′) ← A(Cx, Cy). Then,
since Pedersen commitments are information theoretically
hiding, the protocol in Figure 2 outputs a modulus n sam-
pled from the following distribution:

choose random Cx, Cy
R
←− ZQ

(pmin, qmin)← A(Cx, Cy)
output RSAKeyGen(k, pmin, qmin)

Therefore, by the RSA assumption about algorithm RSAKeyGen

the protocol generates secure distribution of RSA moduli.
Next, to argue that the protocol leaks at most O(log k)

bits of information about the prime factors with high prob-
ability, we construct a simulator S that simulates the tran-
script of a successful run of the protocol with A given only n
and an additional O(log k) bits of information. This will
prove that given n, the protocol leaks only O(log k) addi-
tional bits. The protocol transcript consists of

(Cx, Cy, x
′, y′, n, δx, δy, π, σ)

where n = pq and p = x + x′ + δx, q = y + y′ + δy for
some x, y. For a prime p let pre(p) be the prime immedi-
ately preceding p. The simulator S takes three arguments
as input: the modulus n = pq produced by a successful run
of the protocol and the quantities

∆p = min(p− pre(p), ∆) ; ∆q = min(q − pre(q), ∆)



The simulator works as follows:

S(n,∆p,∆q):
repeat:

choose random Cx, Cy
R
←− ZQ

generate (x′, y′)← A(Cx, Cy)
until n ∈

[

(x′ + 2k)(y′ + 2k), (x′ + 2k+1)(y′ + 2k+1)
)

choose random δx in [0,∆p)
choose random δy in [0,∆q)
use the ZK simulator for Pedersen products to

simulate a proof π that n = (x+ x′ + δx)(y + y′ + δy)
where x and y are the values committed in Cx, Cy.

run A giving it n, δx, δy, π and obtain σ
output the simulated transcript:

(Cx, Cy, x
′, y′, n, δx, δy, π, σ)

The simulator S properly simulates the Pedersen commit-
ments Cx, Cy and the quantities x′, y′, given that the proto-
col generated the modulus n. Similarly, given that n = pq
was the output we know that the random variable x + x′

is uniformly distributed in the interval (pre(p), p] whenever
p − pre(p) < ∆ and is uniform in (p −∆, p] otherwise. Ei-
ther way, the value of δx is uniform in [0,∆p). Hence S
properly simulates δx and similarly δy. Finally, π is prop-
erly simulated using the ZK knowledge simulator for a proof
of Pedersen products.
We explained in Section 3.2 that ∆p and ∆q are O(k) in

size with high probability, and therefore the protocol leaks
at most O(log k) bits of information

4.1.2 Protects Device from the CA and Client

Having established that the protocol protects a high-entropy
device from the entropy authority, we demonstrate that an
honest device interacting with an honest entropy authority
holds a strong key at the end of a protocol run, even if the
device has a weak entropy source.

Theorem 4.2. When interacting with an honest EA, the
RSA protocol in Figure 2 generates a secure distribution of
RSA moduli assuming the RSA assumption about algorithm
RSAKeyGen.

Proof. LetA be a device honestly following the protocol,
but one that may have a weak entropy source. We let A()
denote the x, y chosen by the device in Step 1. Given an
honest EA, the protocol in Figure 2 outputs a modulus n
sampled from the following distribution:

(pmin, qmin)← A()
output RSAKeyGen(k, pmin, qmin)

By the RSA assumption about algorithm RSAKeyGen the
protocol generates secure RSA moduli.

4.1.3 Protects EA from a Malicious Device

Suppose the device is dishonest and its goal is to discredit
the entropy authority. The device may try to cause the EA
to sign a modulus n in Step 4 of the protocol where n is
sampled from a low entropy distribution. For example, the
two prime factors of n = pq may look non-random (e.g. their
binary representation may end in many 1’s) or n may have
a non-trivial GCD with another public RSA modulus. The
EA’s signature would then serve as incriminating evidence
that the “random” values x′ and y′ the EA contributed to
the protocol in Step 2 were not sampled from the uniform
distribution over [2k, 2k+1).

Note, however, that if the modulus n output by the device
is an ill-formed RSA modulus—say n is not a product of two
primes—then clearly the EA is not at fault since the device
did not properly generate n. Therefore the EA need not
worry about invalid moduli. It only cares about not signing
low-entropy moduli.

The following theorem shows that an honest EA will never
sign a low-entropy modulus.

Theorem 4.3. Consider an honest entropy authority in-
teracting with a malicious polynomial-time device. Suppose
that the RSA modulus n signed by an honest entropy au-
thority in Step 4 is a product of two distinct primes n = pq
each in the range [2k+1, 2k+2). Then each of the primes is
sampled from a distribution with at least k − 2 − d log(k)
bits of min-entropy for some absolute constant d, even when
conditioned on the other prime.

Proof sketch. We first show that n must be sampled
from a distribution with sufficiently high min-entropy. In
Step 4 of the protocol, the proof π convinces the EA that

n = (x+ x′ + δx)(y + y′ + δy) (mod Q)

for some (unknown) x and y, whereQ is the group order used
for the Pedersen commitments. Recall that Q > 210022k.
Since the device must commit to x before seeing x′ we know
that x+x′ is sampled independently from a distribution over
ZQ with min-entropy at least k (in the worst case, x+ x′ is
sampled uniformly from the integers in an interval of width
2k). Since the device controls δx and 0 ≤ δx < ∆ < c · k for
some absolute constant c, it follows that the min-entropy of
p0 ← x + x′ + δx is at least k − log ck. Similarly the min-
entropy of q0 ← y + y′ + δy conditioned on p0 is at least
k− log ck. Consequently, since n is a product of two primes,
it can be shown for the distributions in question here that
the min-entropy of n = p0q0 mod Q is at least 2k − d log k
for some constant d.

If n is the product of two primes n = pq each in the range
[2k+1, 2k+2) then each prime must be chosen from a distri-
bution with min-entropy at least k−2−d log k (otherwise n
cannot have min-entropy at least 2k−d log k). The theorem
now follows.

4.2 DSA Protocol
In this section, we prove that the DSA key generation pro-

tocol satisfies the security properties outlined in Section 2.

4.2.1 Protects Device from a Malicious EA

We first prove that a device with a strong entropy source
leaks no information about its secret key to the entropy au-
thority during a run of the protocol.

Theorem 4.4. If the device has a strong entropy source
(i.e., the device can sample from the uniform distribution
over a set), then the entropy authority can simulate its in-
teraction with the device.

Proof. We construct a simulator S that, given a DSA
public key A = ga, outputs the transcript (Cx, x

′, rx, A, σ)
of a protocol run between an honest device and a malicious
entropy authority A. The simulator S constructs the tran-
script as follows:



S(A): choose random rx
R
←− Zq

set Cx ← Ahrx

generate x′ ← A(Cx)
run A on (A, rx) to get a signature σ
output the simulated transcript: (Cx, x

′, rx, A, σ)

The simulator’s transcript is statistically indistinguishable
from the transcript of a real protocol run between an honest
device with a strong entropy source and the entropy author-
ity A. If the device has a strong entropy source, then the
randomness rx used in the commitment is sampled indepen-
dently from the uniform distribution. The values Cx, x

′ and
σ are constructed exactly as they would be in a real run of
the protocol.

4.2.2 Protects Device from the CA and Client

Having established that a device with a strong entropy
source leaks no secret information to the entropy authority,
we now demonstrate that the key produced by the proto-
col is sampled from the uniform distribution over the set of
possible keys.

Theorem 4.5. If an honest entropy authority does not
abort the key generation protocol, and if either the device
or the entropy authority has a strong entropy source, then
the public keys produced by the protocol in Figure 3 will be
sampled independently from the uniform distribution over G.

Proof. If the entropy authority does not abort the key

generation protocol, then the equality Ahrx = Cxg
x′

is sat-
isfied in the Step 4 of the protocol. Rearranging these terms

to compute the public key A: A = Cxg
x′

/hrx = gx+x′

.

To demonstrate that the public key gx+x′

is uniformly dis-
tributed over the set of possible public keys, it suffices to
show that either x or x′ is selected uniformly at random
from Zq and that x and x′ are independent.
If the device has a strong entropy source, then the device’s

secret value x will be selected uniformly from Zq. To show
that x′ is independent of x, we rely on the “perfect hiding”
property of the Pedersen commitment scheme. The commit-
ment Cx that the entropy authority sees before selecting its
value x′ is simply a value gxhrx selected at random from G.
If x is independent of x′ and x is uniformly distributed over

Zq then gx+x′

is uniformly distributed over G.
If the entropy authority has a strong entropy source, then

the entropy authority’s value x′ will be selected uniformly
from Zq. Since the device must commit to x before it sees
x′, the only way that the device’s value x can depend on
x′ is if the device is able to open its commitment Cx to a
value x that depends on x′. The “computationally binding”
property of the Pedersen commitment scheme prevents the
device from opening Cx to a value that depends on x′. If the
device could open the commitment to a value of its choice,
the device would be able to compute discrete logarithms in
G. If x is independent of x′ and x′ is sampled from the

uniform distribution over Zq then gx+x′

is sampled from the
uniform distribution over G.

4.2.3 Protects EA from a Malicious Device

Theorem 4.2.2 holds even if the device is malicious, so a
key produced from an interaction between a malicious device
and an honest entropy authority will be strong.
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Find δx, δy

CPU user time (seconds)

Figure 4: Operations taking longer than 0.05s dur-
ing a run of the RSA protocol on the home router.

5. EVALUATION
To demonstrate the practicality of our RSA and DSA key

generation protocols, we implemented the protocols in C us-
ing the OpenSSL cryptography library. We evaluated the
performance of the protocols on three different devices: a
Linux workstation with two 3.2 GHz Intel W3656 proces-
sors, a MacBook Pro laptop with a single 2.5 GHz dual-
core processor, and a Linksys E2500-NP home router with
a 300 MHz Broadcom BCM5357r2 processor. The entropy
authority in all experiments was a modern Linux server and
the DSA protocol experiments use the NIST P-224 elliptic
curve as the elliptic curve DSA (EC-DSA) group [25].

Embedded devices, like the Linksys router we used in our
evaluations, lack the keyboard, mouse, hard drive, and other
peripherals used as entropy sources on full-fledged machines.
As a result, these device are particularly susceptible to gen-
erating weak keys. By evaluating our key generation proto-
cols on a $70 Linksys router, we demonstrate that the pro-
tocols are practical even on low-power, low-cost (and often
low-entropy) embedded devices. For the purposes of eval-
uation, we installed the Linux-based dd-wrt [22] operating
system on the Linksys router and ran our key generation
protocol in a user-space Linux process.

Table 1 presents the wall-clock time required to generate
a 2048-bit RSA key and a 224-bit EC-DSA key on each ma-
chine, averaged over eight trial runs. When running on the
laptop and workstation, which have relatively fast CPUs, the
bulk of the protocol overhead (roughly 90%) comes from the
network latency in communicating with the entropy author-
ity. On the CPU-limited home router, the protocol causes a
near-2× slowdown, even without the network latency. Even
so, running the EC-DSA protocol takes fewer than two sec-
onds on all three of the devices.

The standard RSA keypair generation algorithm requires
much more computation than the EC-DSA algorithm, so the
cost of interacting with the entropy authority is amortized
over a longer total computation in the RSA protocol. As a
result, the slowdown factors on each of the three devices is
smaller for the RSA protocol than for the DSA variant. The
protocol incurs less than a 2× slowdown when running on
the home router—generating a standard 2048-bit RSA key-
pair takes nearly 60 seconds and generating a keypair with
the protocol takes just over 100 seconds. On the laptop and
workstation, around 50% of the slowdown is due to network
latency. On these faster devices, generating an RSA keypair
using the protocol takes less than three seconds.

Figure 4 presents a graphical break-down of the CPU user
time required to perform the most expensive operations in
the RSA key generation protocol on the home router. Nearly
half of the CPU time consumed during the protocol is spent



EC-DSA (224-bit prime) RSA (2048-bit)
No proto Proto Proto+Net Slowdown No proto Proto Proto+Net Slowdown

Linksys Router 0.45 0.84 1.61 3.6× 59.16 96.93 101.57 1.7×
Laptop 0.03 0.08 0.72 28× 0.52 1.26 2.01 3.9×

Workstation 0.004 0.05 0.68 160× 0.16 0.65 1.41 8.7×

Table 1: Time (in seconds) to generate a keypair without our protocol, with a local EA, and with an EA via
the Internet with ≈ 80 ms of round-trip latency. The Slowdown column indicates the slowdown factor of our
protocol running over the Internet relative to the standard key generation algorithm.

in finding the δx and δy offset values to make the RSA fac-
tors p and q prime. Finding these offsets requires running
the Miller-Rabin [38] primality test on a number of candi-
date primes. This expensive search for primes p and q is also
required to generate an RSA modulus without our key gen-
eration protocol, so this search does not constitute protocol
overhead.
The other expensive operations are computing the Peder-

sen commitments (each of which requires big-integer modu-
lar exponentiations) and generating the non-interactive zero-
knowledge proof that n is the product of the values contained
in the commitments Cp and Cq. The final expensive oper-
ation is generating the PKCS#10 certificate request, which
the device signs with its newly generated RSA key.
Our implementation does not use fast multi-exponentiation

algorithms [34] (e.g., for computing Pedersen commitments
gahr quickly) or exploit parallelism to increase performance
on multi-core machines. An aggressively optimized production-
ready implementation could use these techniques to improve
the performance of the protocol.
As shown in Figure 5, our protocol imposes a near-uniform

4× computation overhead (measured in CPU user time) on
EC-DSA key generation. This slowdown arises because our
EC-DSA protocol requires three elliptic curve point multi-
plications and a single signature verification, compared with
the single elliptic curve point multiplication required in tra-
ditional EC-DSA key generation. At the smallest usable
EC-DSA key size, 112 bits, the protocol set-up cost dom-
inates the overall running time, so the protocol imposes a
5.6× overhead.
The computational overhead of generating RSA keys using

our protocol decreases as the key size increases. The domi-
nant additional cost of our RSA protocol is the cost of the
modular exponentiations used in the commitment scheme
and zero-knowledge proof generation. As k increases, the
cost of finding the RSA primes grows faster than the addi-
tional cost of our protocol, so the computational overhead
of our protocol tends to 1.

6. IMPLEMENTATION CONCERNS
This section discusses a handful of practical implementa-

tion issues that a real-world deployment of our key genera-
tion protocols would have to address.

Integration with the CA infrastructure. Integrating
our key generation protocols with the existing CA infras-
tructure would require only modest modifications to today’s
infrastructure. In a deployment of our key generation pro-
tocol, the device could interact with the entropy authority
using an HTTP API. After the device obtains the entropy
authority’s signature on its public key, the device would em-
bed the EA signature in an extension field in the PKCS#10
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Figure 5: Computational overhead (in CPU user
time) imposed when a laptop uses our key gener-
ation protocols to generate keypairs of various sizes.

certificate signing request that the device sends to the cer-
tificate authority. Each certificate authority would maintain
a list of public keys of approved entropy authorities (in the
way that browsers and SSL libraries today maintain a list of
root CA public keys). When a certificate authority receives
a PKCS#10 request from a device, the CA would first check
the validity of the EA’s signature on the request. If the sig-
nature is valid and the CA is able to verify the identity of
the requesting device, the CA would sign the certificate and
return it to the device.

We expect that many commercial certificate authorities
would be willing to serve as free public entropy authorities,
since the computational cost of acting as an entropy author-
ity is small (less than one CPU-second per protocol run).
Organizations large enough to have their own IT depart-
ments might run their own internal entropy authorities as
well.

Self-Signed Certificates and SSH. TLS servers often
use self-signed certificates to provide link encryption with-
out CA-certified identity. The analogue of a self-signed cer-
tificate in our setting is a certificate that is signed by the
entropy authority but that is not signed by a certificate au-
thority. This sort of certificate would convince a third party
that the device’s public key is sampled from a high-entropy
distribution, without convincing a third party that the key
corresponds to a particular real-world identity. As long as
some EAs provide their services for free (which we expect),
EA-signed certificates will be free, just as self-signed certifi-
cates are free today.

To generate such a certificate, the device would submit
a PKCS#10 certificate signing request to the entropy au-
thority at the end of Step 3 of the RSA protocol or Step 3
of the DSA protocol, along with other data it sends. The
entropy authority would then sign the request and would



return the EA-signed certificate to the device. TLS clients
(e.g., Web browsers) would maintain a list of public keys
of approved entropy authorities, just as today’s client keep
a list of approved root CAs. When a client connects to a
device that uses an EA-signed certificate, the client would
verify the EA’s signature and would treat the certificate just
as it treats self-signed certificates today.
SSH could similarly use EA-signed keys to use convince

clients that a particular SSH host generated its public key
using random values from an approved entropy authority.
To accomplish this, the SSH server software would define
a new public key algorithm type for EA-signed keys (e.g.,
ssh-rsa-rand). Keys of this type would contain the SSH
host’s normal public key, but they would also contain an
EA’s signature on the SSH host’s public key (along with
the fingerprint of the signing EA’s key). SSH clients that
support the ssh-rsa-rand key type would be able to verify
the EA’s signature on the host’s key to confirm that that
the host’s key incorporates randomness from an approved
entropy authority.

Other entropy issues. Our key generation protocol
only ensures that a device’s RSA or DSA keypair has suffi-
cient randomness—it does not ensure randomness in other
security-critical parts of the system (e.g., signing nonce gen-
eration, TLS session key selection, address space layout ran-
domization). We focus on cryptographic key generation be-
cause attacks against weak public keys are especially easy to
mount. Once a device publishes a weak public key, the de-
vice is likely to use the same public key for months or years.
Thus, even if the device’s entropy source strengthens over
time (as the device gathers randomness from network inter-
rupt timings, for example) the device’s keys remains weak.
Hedged public-key cryptography [1, 39], in conjunction with
our key generation protocols, would help reduce the risk of
bad randomness in signing and encryption, but solving all
of these randomness problems is likely beyond the scope of
any single system.

Distributing trust with many entropy authorities.
As we note in Section 2, if the device has a weak entropy
source then there is no way to protect the device against a
eavesdropper that observes all communication between the
device and the EA. Our threat model excludes the possibility
of such an eavesdropper, but if the device is particularly
concerned about eavesdroppers on its initial conversation
with the EA, the device could run a modified version of
the protocol with many entropy authorities instead of just
one. With multiple EAs, an eavesdropper would have to
observe the device’s communication with all of the EAs to
learn the device’s secret key. We sketch the multi-authority
DSA protocol here. A similar modification allows RSA key
generation with multiple entropy authorities.
In the multi-authority DSA protocol, the device commits

to its random value x and sends Cx ← Commit(x; r) to each
of N entropy authorities. Each entropy authority responds
with (xi, ri, σi), where xi and ri are random values in Zq

and σi ← SignEAi
(Cx,Commit(xi; ri)). The device’s secret

key is then a = x + Σixi mod q. The device can obtain a
signature on its public key ga from each entropy authority
by presenting each authority with its public key, its commit-
ment to x, the randomness r it used to commit to x, the set
~r of nonces used in the entropy authorities’ commitments,
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Figure 6: Approximate number of k-bit modular ex-
ponentiations the device must compute to generate
a k-bit RSA modulus.

the set ~C of commitments to each of the entropy authority’s
random values, and the set of entropy authority signatures
~σ: (ga, Cx, r, ~r, ~C, ~σ). Each authority verifies each EA sig-
nature σi, confirms that gahr+Σiri = Cx(Πi Ci), and signs
the device’s public key ga.

Default keys. Roughly 5% of TLS hosts on the Inter-
net in 2012 used default keys, which are pre-loaded into the
device’s firmware by the manufacturer [29]. Typically, any
two such devices of the same model and firmware version
will ship with the same public and secret key. To recover
a default secret key, an attacker can download the firmware
for the device from the manufacturer’s Web site or look up
the default key in a database designed for that purpose [33].

Our protocol does not protect against a manufacturer who
installs the same keypair in many devices. If a manufacturer
wants all of her devices to ship with a default keypair signed
by an entropy authority, the manufacturer could run our key
generation protocol once in the factory, and then install this
single EA-signed keypair in every device shipped.

Installing the same keypair in many devices is tantamount
to publishing the device’s secret key, which is an “attack”
which we cannot hope to prevent. As a heuristic defense
against default keys, a client connecting to a device could
require that the device use a certificate that was generated
after the manufacture of the device (as indicated, for exam-
ple, by an EA-signed timestamp on the certificate).

7. RELATED WORK
Hedged public-key cryptography [1, 39] addresses the prob-

lem of weak randomness during message signing or encryp-
tion, whereas our work addresses the problem of random-
ness during key generation. Cryptographic hedging provides
no protection against randomness failures when generating
cryptographic keys but deployed systems could use hedg-
ing in conjunction with our key-generation protocols to de-
fend against weak randomness after generating their cryp-
tographic keys.

Intel’s Ivy Bridge processor implements a hardware in-
struction that exploits physical uncertainty in a dedicated
circuit to gather random numbers [40]. A hardware ran-
dom number generator provides a new and potentially rich
source of entropy to cryptographic applications. Devices
without hardware random number generators could use a
variety of other techniques to gather possibly unpredictable
values early in the system boot process [35]. Even so, having
a rich entropy source does not mean that software develop-
ers will properly incorporate the entropy into cryptographic
secrets. Our protocol ensures that keys will have high en-
tropy, even if the cryptographic software ignores or misuses
hardware-supplied randomness.

Juels and Guajardo [30] offer a protocol for RSA key gen-
eration that is superficially similar to the one we present
here. The Juels-Guajardo protocol protects against klep-
tography [42], in which a device’s cryptography library is
adversarial, and repudiation, in which a signer intention-



ally generates a weak cryptographic signing key so that the
signer can disown signed messages in the future. To pre-
vent against these very strong adversaries, their protocol
requires a number of additional zero-knowledge proofs that
are unnecessary in our model. Using the number of modular
exponentiations as a proxy for protocol execution time, the
Juels-Guajardo protocol would likely take over 40 minutes
to execute on the home router we used in our experiments,
while our protocol takes fewer than two minutes (see Fig-
ure 6). In addition, Juels and Guajardo do not address the
issue of a device whose source of randomness is so weak that
it cannot create blinding commitments or establish a secure
SSL session.

8. CONCLUSION
This paper presents a systemic solution to the problem

of low-entropy keys. We present a new threat model, in
which a device generating cryptographic secrets may have
one communication session with an entropy authority which
an eavesdropper cannot observe. Under this threat model,
we describe protocols for generating RSA and DSA keypairs
that do not weaken keys for devices that have a strong en-
tropy source, but that can considerably strengthen keys gen-
erated on low-entropy devices. Our key generation protocols
incur tolerable slow-downs, even on a CPU-limited home
router. The threat model and protocols presented herein
offer a promising solution to the long-standing problem of
weak cryptographic keys.
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[34] B. Möller. Algorithms for multi-exponentiation. In Selected
Areas in Cryptography, pages 165–180, 2001.

[35] K. Mowery, M. Wei, D. Kohlbrenner, H. Shacham, and
S. Swanson. Welcome to the Entropics: Boot-time entropy in
embedded devices. In IEEE Symposium on Security and
Privacy, 2013.

[36] NetBSD security advisory 2013-003: RNG bug may result in
weak cryptographic keys. ftp://ftp.netbsd.org/pub/NetBSD/
security/advisories/NetBSD-SA2013-003.txt.asc, Mar. 2013.

[37] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO, pages 129–140.
Springer, 1992.

[38] M. O. Rabin. Probabilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128–138, 1980.

[39] T. Ristenpart and S. Yilek. When good randomness goes bad:
Virtual machine reset vulnerabilities and hedging deployed
cryptography. In NDSS, 2010.

[40] G. Taylor and G. Cox. Behind Intel’s new random-number
generator. IEEE Spectrum, Sept. 2011.

[41] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage.
When private keys are public: Results from the 2008 Debian
OpenSSL vulnerability. In IMC, pages 15–27, Nov. 2009.

[42] A. Young and M. Yung. Kleptography: Using cryptography
against cryptography. In EUROCRYPT, pages 62–74, 1997.


