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Abstract. Anonymous communication schemes that provide strong traffic analysis resistance (e.g., DC-
nets and Mix-nets) are too slow for large-scale interactive use. Low-latency systems (e.g., Tor) provide
users with alarmingly small anonymity set sizes, especially in heavily monitored networks. We present
preliminary work on a new anonymity protocol that makes this anonymity/latency trade-off an explicit
and user-adjustable parameter. We call our technique anonymity scavenging: the longer a user is willing to
wait for a message to leave the system, the more anonymity that user will be able to scavenge from other
users. Our protocol builds upon previous provable schemes, and we expect formal proofs of security to be
a large component of future work.

1 Background

Existing anonymity systems offer dangerously small anonymity set sizes for users in heavily monitored networks.
Although there are around 1,000 daily Tor users in China [12], many fewer than 1,000 users will be online at
any moment. Our approximation, based on browsing behavior statistics [10], suggests that Tor has fewer than
90 active users in China in any given 5-minute interval.

Even though there are 1,000 daily users of Tor in China, and probably many more than 1,000 distinct users
in a week, low-latency anonymity systems [6, 1, 8] do not allow latency-insensitive users to take advantage of
these larger potential anonymity sets. The anonymity set size a user gets is only as large as the number of users
online at the moment.

Consider Alice, a Tor user in China, who anonymously posts a sensitive article on an online bulletin board. If
the content of Alice’s article is of local interest (e.g., discussing a corrupt provincial official), government censors
could guess, with some confidence, that that the author is inside of China. The censors could use the timestamp
on Alice’s post, in conjunction with usage data from local ISPs, to identify the 90 Tor users who were online
when the article was posted. The geographical locations of these 90 Tor users might allow authorities to narrow
their search further, until Alice is anonymous only within a handful of other Tor users.

We present our preliminary work on BlogDrop, an anonymity protocol that treats anonymity set size—and
hence, latency—as a user-tunable parameter. Users who want lower-latency communication can settle for smaller
anonymity set sizes (e.g., the 90 users who are online right now). Users who want more secure communication
can request much larger anonymity set sizes (e.g., the 1,000 users who will be online in the next 24 hours).
BlogDrop achieves these properties by combining a non-interactive DoS-resistant DC-net construction [9] with
a client/server DC-net topology [13].

One attractive feature of our design is that, to post a BlogDrop message, clients need only to “drop off” a
ciphertext at a server. Clients need not interact with the server (beyond this one-way bit drop-off) nor with
other clients. We have not attempted a formal proof of security of the BlogDrop protocol, but we expect that
this non-interactivity, and its basis on techniques with formal proof [9, 2] will greatly simplify BlogDrop’s formal
analysis.

Batching mix-net schemes [3, 5] can also achieve anonymity scavenging, but they require O(n) storage for
an anonymity set size of n; BlogDrop reduces the storage required to O(1). BlogDrop’s end-to-end number of
serial communication rounds is constant in the number of servers, while mix-nets require O(k) communication
rounds for networks of k servers.

2 Design Overview

The BlogDrop protocol takes place between posters and servers. Each server maintains a “bin” for each blog and
we assume that at least one of the servers is honest [13]. To contribute to a blog, a blog poster “drops” a ciphertext
into the bin of a participating server. One of these blog posters is the secret author, whose ciphertext conceals



the plaintext blog message. The rest of the blog posters submit cover ciphertexts that are cryptographically
indistinguishable from each other and from the author’s ciphertext.

Once a server has enough valid ciphertexts (we explain what “enough” means later on) in its bin, the server
shares the contents of its ciphertext bin with all of the other servers. When every server’s bin contains enough
ciphertexts, the servers take the union of their bins to determine the final ciphertext set. Finally, each server
drops its own server ciphertext into the bin, along with ciphertexts from every other server. The server then
combines this final set of client and server ciphertexts together to reveal the plaintext message. The servers then
empty their bins and repeat the process.

To create the bins, we use a DC-net scheme that combines elements of Golle’s non-interactive construction [9]
and Wolinsky’s client/server key-sharing graph [13]. When a poster drops off a ciphertext, the poster submits
a non-interactive proof that the ciphertext is either a properly constructed cover ciphertext or that the poster
knows the blog author’s secret key. We implement this either/or proof using standard techniques [2] and we
present a sketch of our ciphertext and proof construction in Appendix A.

Intuitively, the more ciphertexts there are in the bin, the larger potential anonymity set size the author can
achieve. All participants know some poster submitted a plaintext message, but they do not know which one did.
If the author is willing to wait until the bin has 1,000 distinct ciphertexts, then the author can hide among these
1,000 posters. In contrast, an impatient author who values speed over security might only require 10 ciphertexts
to be in the bin before the servers collectively reveal the plaintext.

In fact, the blog author might specify more complicated bin closure conditions to prevent Sybil attacks or
to encourage a more diverse anonymity set. For example, the blog author could request that servers close the
bin only after 100 users with distinct VeriSign certificates and 15 users from Sweedish IP addresses and 200
other users have dropped ciphertexts in the bin and only when today’s date is later than November 6, 2012.
Since each server independently verifies that the closure condition is satisfied for each bin, and since we assume
that at least one server is honest, the plaintext will remain indecipherable until the ciphertext bin satisfies the
closure condition.

The BlogDrop protocol requires many posters to submit cover traffic but only one poster (the author)
actually writes blog posts. Cover traffic posters could be readers of the blog, or they could be authors of other
blogs hosted on the same set of servers. Servers could enforce a “pay-for-play” scheme, in which to read one blog,
clients must post ciphertexts to a random set of other blogs. One area for further work is to investigate ways
to incentivize non-authors to post ciphertexts and what the security consequences of these different incentives
might be.

3 Blog Creation

To create a blog, the blog author creates a policy document for the blog and transmits it to the servers. The
policy document defines: (1) the set of servers for the blog (identified by their public keys), (2) the pseudonymous
author public key for the blog, and (3) the closure condition. The servers use information in the policy document
to learn the closure condition for the blog and the clients use the policy document to construct their ciphertexts.

To maintain anonymity, the blog author must transmit the policy document anonymously to all of the
servers. At first glance, it might appear that having to transmit the policy document anonymously leads to a
“chicken-and-egg” problem: to blog anonymously, the author must anonymously transmit the policy document
to the servers. Distributing the policy document is not as difficult as it sounds—primarily because the person
who distributes the policy document never needs to participate in the BlogDrop protocol later on.

One potential policy document distribution scheme would use verifiable shuffles [11] or batching mix-nets [3].
Another distribution scheme would use offline social networks: the true author Alice could create a blog policy
document and give it to her friend Bob, who then gives it to the servers. Since Alice does not sign the policy
document with her public signature, the servers will not be able to cryptographically link the policy document
back to Alice.

4 Conclusion

We have presented BlogDrop, an anonymity-scavenging communication protocol that allows users to adjust
their anonymity set size to achieve their desired balance of security and latency. BlogDrop builds on formally
analyzed DC-net and zero-knowledge proof techniques. We expect to apply these ideas and proof strategies to
prove the security of BlogDrop in future work.
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A Hybrid DC-Net

A.1 Description

We now briefly describe the communication primitive that the posters and servers use for the anonymous message
exchanges.

We implement BlogDrop message “bins” using a hybrid DC-net scheme that combines design features from
two prior constructions. Golle’s DC-net [9] prevents DoS attacks by forcing participants to proactively prove the
validity of their ciphertexts in zero knowledge. Wolinsky’s DC-net [13] introduces a client/server key-sharing
graph, and a few additional trust assumptions, to allow a DC-net exchange to continue even if many participating
nodes fail. In particular, Wolinsky’s construction requires that, to maintain security, at least one server is honest
(though clients need not know which one is honest). We combine Golle’s DoS-resistant DC-net construction
with Wolinsky’s client/server topology to create a DC-net that provides non-interactive DoS prevention and
that allows for membership churn among the blog posters.

BlogDrop makes a few modification to this hybrid DC-net scheme to make it more suitable to anonymity
scavenging. First, in a BlogDrop DC-net bin, there is only one transmitter (the blog author)—all non-author
posters drop only cover ciphertext in the message bin. Since there is only one transmitter in the DC-net, there
is no possibility for message collisions and there is no need to set up a transmission “schedule”, as previous
DC-net-derived schemes require [4, 13]. Having a single transmitter also means that the length of each message
in each bin is constant in the number of participants. Blog posters can drop off ciphertexts without knowing
how many other posters will drop off ciphertexts in the bin.



Second, there is no fixed or enumerated set of group members in the BlogDrop DC-net: the servers remain
the same for a given blog, but the set of participating posters can change with every subsequent bin. Third,
BlogDrop servers can incrementally collapse the contents of their bin into a constant-size combined ciphertext.
(In contrast, mix servers must store n ciphertexts for a bin with n messages.) Having no fixed group membership
means that the anonymity set size for a particular bin can become arbitrarily large and it can include participants
who join after the blog’s creation.

We have implemented the BlogDrop cryptographic primitives in C using Diffie-Hellman key exchanges in Z
∗

p

(as opposed to Golle’s pairing-based instantiation [9]) using standard discrete-log proof techniques [2]. Gener-
ating 128 KB of poster ciphertext (including the zero-knowledge proofs) takes 5.2 seconds and generating 128
KB of server ciphertext takes 3.1 seconds on a modern workstation.

A.2 Ciphertext Construction

We outline the ciphertext construction technique for the hybrid DC-net without describing the specifics of the
server-to-server communication protocol.

BlogDrop’s ciphertext construction uses a finite cyclic group G and generator g (constant parameters). We
denote the Diffie-Hellman public/private key pair (ga, a) as (A, a). Each server j has a long-term well-known
public/private key pair (Bj , bj).

1 The policy document contains the author public key Y for the blog. Each
poster i has a long-term well-known signing key pair that it uses to authenticate itself to the servers.

To create a ciphertext, message poster i generates a one-time-use key pair (Ai, ai). The poster ciphertext is
the product of the Diffie-Hellman shared secrets between poster i’s one-time-use private key and the public key
of every server:

Cposter,i =
∏

j∈servers

(Bj)
ai

If the poster is the secret author, the poster multiplies the secret message m with the ciphertext, to produce the
author ciphertext mCposter,i. The author then executes the rest of the ciphertext construction using mCposter,i

in place of Cposter,i.
Using standard discrete logarithm proof-of-knowledge techniques [2], poster i proves that either Cposter,i is

a correct cover or poster i is the blog author:

PoK{a, y :



Cposter,i = (
∏

j∈servers

Bj)
a ∧Ai = ga



 ∨ Y = gy}

Poster i attaches the one-time-use public key, the proof of knowledge, the bin index t, and a hash of the blog
policy document d to the final ciphertext and signs this tuple with the one-time-use key ai:

{Ai, Cposter,i,PoK, t,H(d)}sigai

Poster i submits this ciphertext tuple to one of the servers. BlogDrop’s use of a one-time-use public key to encrypt
a ciphertext is similar to the technique used in ElGamal encryption [7], except that a BlogDrop ciphertext is
encrypted with the public key of every server, not just with a single recipient’s public key.

Once the servers have agreed upon a final poster ciphertext set, each server j uses the per-round public
submitted by every poster to produce it’s own server ciphertext:

Cserver,j =
∏

i∈posters

(Ai)
−bj

Server j proves the validity of Cserver,j to the other servers by demonstrating that it used its long-term server
private key bj to generate its server ciphertext:

PoK{b : Cserver,j = (
∏

i∈posters

Ai)
−b ∧Bj = gb}

The product of all poster and server ciphertext reveals the plaintext m.

1 To prevent maliciously formed public keys, we require each server to non-interactively prove knowledge of their private
key.


