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Abstract

Current anonymous communication systems make a

trade-off between weak anonymity among many nodes,

via onion routing, and strong anonymity among few

nodes, via DC-nets. We develop novel techniques in Dis-

sent, a practical group anonymity system, to increase by

over two orders of magnitude the scalability of strong,

traffic analysis resistant approaches. Dissent derives its

scalability from a client/server architecture, in which

many unreliable clients depend on a smaller and more

robust, but administratively decentralized, set of servers.

Clients trust only that at least one server in the set is hon-

est, but need not know or choose which server to trust.

Unlike the quadratic costs of prior peer-to-peer DC-nets

schemes, Dissent’s client/server design makes communi-

cation and processing costs linear in the number of clients,

and hence in anonymity set size. Further, Dissent’s servers

can unilaterally ensure progress, even if clients respond

slowly or disconnect at arbitrary times, ensuring robust-

ness against client churn, tail latencies, and DoS attacks.

On DeterLab, Dissent scales to 5,000 online participants

with latencies as low as 600 milliseconds for 600-client

groups. An anonymous Web browsing application also

shows that Dissent’s performance suffices for interactive

communication within smaller local-area groups.

1 Introduction

Anonymous communication is a fundamental component

of democratic culture and critical to freedom of speech [5,

40,56,57,59], as an AAAS conference in 1997 concluded:

“Anonymous Communication Should Be Re-

garded as a Strong Human Right; In the United

States It Is Also a Constitutional Right” [56]

The Arab Spring underscored the importance of this

right, as organizers used pseudonymous Facebook and

Twitter accounts to coordinate protests [46], despite vi-

olating those sites’ Terms of Service and risking ac-

count closure [48]. Authoritarian states routinely monitor

and censor Internet communication [22]: though citizens

may risk “slap-on-the-wrist” punishments like blocking or

throttling if detected to be using anonymity or circumven-

tion tools [24,25,50,62], users discussing the wrong topic

without protecting their identity risk jail or worse.

Even in countries with strong free speech traditions,

anonymity can protect minority groups from discrimina-

tion [53]. Increasingly pervasive, profit-motivated track-

ing practices [51] have made communication linkability

a widespread privacy concern [30]. Finally, anonymity

plays other well-established roles in modern societies,

such as in voting [2, 19, 44] and auctions [52].

Anonymous relay tools such as Tor [26] offer the

strongest practical identity protection currently available,

but exhibit several classes of weaknesses. First, relay sys-

tems are vulnerable to traffic analysis [6,13,37,43,45]. A

state-controlled ISP, for example, who can monitor both

a user’s “first-hop” link to Tor and the “last-hop” link

from Tor to the user’s communication partner, can cor-

relate packets to de-anonymize flows [43]. Second, ac-

tive disruption attacks can not only “deny service” but

de-anonymize flows as well [6, 10]. Third, independent

of the underlying anonymity protocols in use, widely-

deployed tools often fail to isolate anonymous from

non-anonymous communication state adequately, causing

application-layer identity leaks via third-party browser

plug-ins for example [1, 9, 17, 27].

As a step toward stronger anonymity and tracking pro-

tection we offer Dissent, a practical anonymous group

group communication system resistant to traffic analy-

sis. Dissent builds on and derives its strength from dining

cryptographers or DC-nets [14, 36] and verifiable shuf-

fles [11, 32, 44]. Prior systems to adopt these techniques,

such as Herbivore [35, 49] and an earlier version of Dis-

sent [20], demonstrated usability for anonymity sets only

up to 40–50 participants, due to challenges in scaling and

handling network dynamics. This paper improves the scal-

ability of these strong anonymity techniques by at least

two orders of magnitude, substantially narrowing the gap

compared with relaying approaches [18, 21, 26, 38, 42].

Dissent derives scalability from an anytrust architec-

ture [60]. A Dissent group consists of a potentially large

set of client nodes representing users, and a smaller set of

servers, facilitators of anonymous communication. Each

client trusts that at least any one server will behave hon-
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estly and not collude with the others against it, but the

client need not know or choose which server to trust.

While anytrust is not a new idea, Dissent rethinks DC-nets

communication [14] around this model by sharing secret

“coins” only between client/server pairs rather than be-

tween all node pairs, yielding a novel, practical and scal-

able system design. This design reduces clients’ computa-

tion and communication burdens, and crucially in practi-

cal networks, decouples a group’s overall communication

performance from long “tail latencies” caused by slow,

abruptly disconnected, or disruptive clients.

A Dissent prototype demonstrates usability on De-

terLab with anonymity sets of over 5,000 members—

over two orders of magnitude larger than anonymity sets

demonstrated in comparable prior systems [20,35,49]. We

expect Dissent to scale further with better optimization.

Although this paper’s primary contribution is to show

that strong anonymity can scale, Dissent also addresses

certain disruption and information leakage vulnerabili-

ties. In Tor and prior DC-nets schemes, an adversary who

controls many nodes can anonymously disrupt partially-

compromised circuits to increase the chance of com-

plete compromise as circuits or groups re-form [10].

Dissent closes this vector with an accusation mecha-

nism adapted to its anytrust network model, enabling a

partially-compromised group to identify and expel disrup-

tors without re-forming from scratch.

In local-area settings with low delay and ample

bandwidth, Dissent can be used for anonymous in-

teractive browsing with performance comparable to

Tor. In this context Dissent can offer a strong local-

area anonymity set complementing Tor’s larger-scale

but weaker anonymity. Dissent addresses an impor-

tant class of anonymous browsing vulnerabilities, due

to application-level information leaks [1, 9, 27], by

confining the complete browser used for anonymous

communication—including plug-ins, cookies, and other

state—in a virtual machine (VM) that has no access to

non-anonymous user state, and which has network access

only via Dissent’s anonymizing protocols.

Dissent has many limitations and does not yet ad-

dress other weaknesses, such as long-term intersection at-

tacks [39]. As a step toward stronger practical anonymity,

however, this paper makes the following contributions:

1. An existence proof that traffic analysis resistant

anonymity is feasible among thousands of participants.

2. A client/server design for DC-nets communication that

tolerates slow or abruptly disconnecting clients.

3. A accusation mechanism offering disruption resistance

in large-scale, low-latency DC-nets designs.

4. A VM-based browsing architecture enforcing a sepa-

ration between anonymous and non-anonymous state.

5. Experiments demonstrating Dissent’s usability in

wide-area messaging applications, local-area interac-

tive anonymity groups, and as a complement to Tor.

Section 2 of this paper describes Dissent’s goals and

how they relate to previous work. Section 3 presents Dis-

sent’s architecture. In Section 4, we overview our pro-

totype, deployment models, and experiences. Section 5

presents the results of our experiments. We conclude with

a summary of the paper’s accomplishments.

2 Background and Related Work

This section outlines the state of the art in both practical

anonymity systems and theoretical protocols, with a focus

on the key security weaknesses that Dissent addresses.

2.1 Practical Anonymity on the Internet

Users can set “Do Not Track” flags [30] asking web sites

not to track them. This advisory mechanisms asks the fox

to guard the henhouse, however, relying on honest behav-

ior from the web site and all network intermediaries. Even

granted the force of law, such requests may be ignored by

web sites in “grey markets” or foreign jurisdictions, just

as today’s anti-spam laws are ignored and circumvented.

For active protection against tracking or identification,

centralized relay services such as Anonymizer [4] offer

convenience but limited security, since one compromised

server—or one subpoena—can break a user’s anonymity.

Users can create accounts under false names on popular

services such as Facebook and Google+, but risk account

loss due to Terms of Service violations—often for dubious

reasons [48]—and may still be traceable by IP address.

For stronger protection without a single point of fail-

ure, decentralized relay networks [18, 21, 26, 38, 42]

have proven practical and scalable. Relaying generally

trades convenience against security, however, with some

caveats [54]. Mixminion [21] forwards E-mail through a

series of relays, delaying and batching messages at each

hop to offer some traffic analysis protection. Tor [26], in

contrast, consciously sacrifices traffic analysis protection

to achieve low latencies for interactive Web browsing.

2.2 Anonymity Sets: Size versus Strength

The convenience that “weaker” systems such as Tor of-

fer users may paradoxically give them a security advan-

tage over “stronger” but less convenient systems such as

Mixminion, because convenience attracts more users and

thus yields much larger effective anonymity sets for their

users to hide in. Tor only offers these large anonymity sets,

however, provided the attacker is not capable of traffic
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analysis—likely a reasonable assumption when Tor was

designed. In today’s more diverse global Internet, how-

ever, the adversary from whom users need identity pro-

tection may often be a national ISP controlled by an au-

thoritarian state. Such an adversary realistically can mon-

itor and “fingerprint” the traffic patterns of users and web

sites en masse, completely de-anonymizing Tor flows that

start and end within the same state. More recent traffic

analysis attacks [6,13,37,45] further accentuate this class

of vulnerabilities. Thus, Tor may informally be viewed as

offering a potentially large but weak anonymity set.

Two other approaches to anonymity theoretically of-

fer security even against traffic analysis: verifiable shuf-

fles [11, 32, 44], and “dining cryptographers” or DC-

nets [14, 36, 58]. Communication and computation costs

have in practice limited these methods to small anonymity

sets, however. Herbivore [35, 49] supports mass partici-

pation by securely dividing large networks into smaller

DC-nets groups, but guarantees each node anonymity only

within its own group, showing scalability only to 40-node

groups. The first version of Dissent [20] focused on ac-

countability rather than scalability, combining verifiable

shuffles with DC-nets to prevent anonymous disruption,

but scaled only to 44-node groups. These techniques thus

have so far offered strong but small anonymity sets.

Today’s anonymity techniques thus present even well-

informed users with a security conundrum: to use a tool

like Tor that under favorable conditions hides them among

tens of thousands of others, but under unfavorable condi-

tions may not hide them at all; or to use a tool that can of-

fer only a small anonymity set but with higher confidence.

Dissent’s goal is to alleviate this conundrum.

3 Dissent Architecture

This section first summarizes DC-nets, then details how

Dissent achieves scalability and resilience to slow or un-

reliable clients. It finally outlines how Dissent traces dis-

ruptors and schedules rounds, and current limitations.

3.1 DC-nets Overview and Challenges

In classic DC-nets [14], one anonymous sender in a group

wishes to share a message with fellow group members. To

exchange a 1-bit message, every member shares a secret

random coin with each of the other N−1 members. Every

pair together first flips their shared coin, agreeing on the

outcome. Then each member individually XORs together

the values of all the coins he shares, while the anonymous

sender additionally XORs in his 1-bit message, to pro-

duce the member’s ciphertext. Finally, all members broad-

cast their ciphertexts to each other. Since each coin is

XORed into exactly two members’ ciphertexts, all shared

coins cancel, revealing the anonymous sender’s message

without revealing who sent it. For longer messages, the

group uses multiple coin flips—in practice, cryptographic

pseudo-random number generators (PRNGs) seeded by

pairwise shared secrets.

Practical implementations of this conceptually simple

design face four key challenges: scheduling, disruption,

scalability, and network churn. First, since DC-nets yield

an Ethernet-like broadcast channel, in which only one

member can transmit anonymously in each bit-time with-

out colliding and yielding garbled output, an arbitration

or scheduling mechanism is needed. Second, any misbe-

having member can anonymously disrupt or “jam” the

channel simply by transmitting random bits all the time.

Dissent builds on and extends several prior approaches to

address these challenges [20, 36, 58].

The third challenge directly limits scalability. Every

member normally shares coins (or keys) with every other

member, so each node must compute and combine O(N)
coins for every bit of shared channel bandwidth. Comput-

ing ciphertexts via modular arithmetic instead of XORed

bits [36] can address this issue asymptotically, but at a

large constant-factor cost. Communication cost can also

limit scalability if every node broadcasts its ciphertext to

every other. In Herbivore [35, 49] a single node collects

and combines ciphertexts for efficiency, but this leader-

centric design offers no reliable way to identify anony-

mous disruptors without re-forming the group, leaving

groups vulnerable to DoS attacks against anonymity [10].

The fourth challenge, network churn, indirectly lim-

its scalability in practice. As each member shares a coin

with every other, a round’s output is indecipherable un-

til all members submit their ciphertexts. Thus, one slow

member delays the entire group’s progress. If any mem-

ber disconnects during a round, all other members must

recompute and rebroadcast their ciphertexts anew. Beyond

“normal-case” churn, an adversary who controls f group

members can take them offline one one at a time to force

a communication round to timeout and restart f times in

succession. Threshold cryptography can address this issue

in non-interactive scenarios [36], but may be too heavy-

weight for interactive communication.

3.2 Design and Deployment Assumptions

Dissent assumes a cloud-like multi-provider deployment

model illustrated in Figure 1, similar to the model as-

sumed in COR [38]. A Dissent group consists of a pos-

sibly large number of client nodes representing individ-

ual users desiring anonymity within the group, supported

by a small number of reliable and well-provisioned cloud

of servers. We assume each server is run by a respected,

technically competent, and administratively independent
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Figure 1: Dissent’s multi-provider anytrust cloud model

anonymity service provider. We envision several commer-

cial or non-profit organizations each deploying a cluster of

Dissent servers to support groups, as either a for-profit or

donation-funded community service.

For anonymity and other security properties Dissent re-

lies on an anytrust assumption [60]. Clients need not rely

on all or even particular providers or their servers being

honest. Instead, each client trusts only that there exists at

least one provider—any provider—who is honest, tech-

nically competent, and uncompromised. Clients need not

know or guess which provider’s server is the most trust-

worthy. Later sections detail how Dissent’s design relies

on this assumption to achieve scalability.

This paper focuses on the operation of a single group—

which forms an anonymity set from a user’s perspective—

and leaves out of scope most details of how groups are

formed or subsequently administered, how providers de-

ploy their services or scale to support many groups, etc.

As a simple group formation mechanism we have pro-

totyped, an individual creates a file containing a list of

public keys—one for each server (provider) and one for

each client (group member)—then distributes this group

definition file to the clients and servers. A cryptographic

hash of this group definition file thereafter serves as a

self-certifying identifier for the group [31], avoiding mem-

bership consensus and PKI issues at the cost of making

the group’s composition static. The group formation tech-

niques explored in Herbivore [35,49] could offer comple-

mentary methods of forming Dissent groups dynamically.

3.3 Dissent Protocol Outline

To initiate communication, a group’s servers periodically

run a scheduling process described later in Section 3.10.

This process yields a list of pseudonym keypairs, one for

each participating client. All nodes know and agree on the

list of public keys and their order, and each client knows

the private key for its slot in the DC-net defined by the

ordered list of pseudonym keypairs, but neither clients

nor servers know which clients hold which other slots.

This list schedules subsequent DC-nets rounds as shown

in Figure 2, and enables the protocol to offer accountabil-

ity as described later in Section 3.9.

Figure 2: DC-nets scheduling via a verifiable shuffle

After setup, group members commence a continuous

series of rounds. Each round allows the owner of each

slot to transmit one or more bits anonymously, as defined

by the schedule and information from prior rounds. Dur-

ing a round, each client first generates M pseudo-random

strings, each based on a secret key he shares with each

of the M servers, and XORs these strings together. To

send a message, the client additionally XORs his clear-

text message into the bit positions corresponding to his

anonymous transmission slot. The client then transmits

his ciphertexts to one or more servers, then waits.

The servers collect as many client ciphertexts as possi-

ble within a time window. At the end of this window, the

servers exchange with each other the list of clients whose

ciphertexts they have received. Each server then computes

one pseudo-random string for each client that submitted a

ciphertext, using the secret shared with that client. The

server XORs these strings, together with with the client

ciphertexts the server received, to form the server’s ci-

phertext (Figure 3). The servers then distribute their ci-

phertexts among themselves. Upon collecting all server

ciphertexts, each server XORs them to reveal the clients’

cleartexts, and distributes the cleartexts to the clients con-

nected to them, completing one DC-net round. Successive

DC-net rounds ensue.

The rest of this section describes Dissent’s client and

server protocols, summarized in Algorithms 1 and 2, re-

spectively, and in Figure 4. All network messages are

signed to ensure integrity and accountability, but we omit

these signatures to simplify presentation.

3.4 Secret Sharing in the Anytrust Model

The key to Dissent’s scalability and resilience to churn is

its client/server secret-sharing graph. Unlike the “all-to-

all” secret-sharing graph in most DC-nets designs, Dissent

shares secrets only between all client/server pairs.

As formalized by Chaum [14], the anonymity set an

honest node obtains via DC-nets consists of the node’s

connected component in the secret-sharing graph, after
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Figure 3: Dissent round structure. Each client-server pair

shares a secret pseudo-random string si,j . Client D anony-

mously transmits a message in slot 1 and client A anony-

mously transmits a message in slot 3. Servers do not XOR

in the strings for offline client C.

removing dishonest nodes and their incident edges from

the graph. A sparser secret-sharing graph thus reduces a

node’s anonymity, compared with the ideal anonymity set

consisting of all honest nodes, if and only if the dishonest

nodes partition the honest nodes into multiple connected

components. Because each Dissent client shares a secret

with each server, the honest nodes remain connected—

yielding an ideal anonymity set—if and only if there is

at least one honest server. This is precisely what Dis-

sent’s anytrust model assumes. The downside is that if all

servers maliciously collude, clients obtain no anonymity.

A direct benefit of Dissent’s client/server secret-sharing

is that clients enjoy a lighter computational load dur-

ing exchanges. Each client shares secrets with only the

M ≪ N servers, thus clients need only compute M
pseudo-random bits for each effective bit of DC-net chan-

nel bandwidth. Each of the servers must compute N
pseudo-random bits per cleartext bit, as in traditional DC-

nets, but these computations are parallelizable, and Dis-

sent assumes that the servers are provisioned with enough

computing capacity to handle this load. Just as important

in practice, however, are the model’s indirect benefits to

network communication and resiliency, detailed next.

3.5 Optimizing Network Communication

Dissent leverages its client/server architecture to reduce

network communication overhead. In conventional DC-

Algorithm 1 Dissent Client DC-net Protocol

1. Scheduling: Each client i creates a fresh secret

pseudonym key, kπ(i), then encrypts and submits it to

a key-shuffle protocol, which permutes and decrypts

all clients’ keys, giving client i a secret permutation

slot π(i) unknown to all other nodes. A well-known

scheduling function S(r, π(i), H) determines the set

of bit-positions client i owns in each subsequent DC-

nets round r, after a history H of prior round outputs.

2. Submission: Each client i forms a cleartext message

mi containing arbitrary data in the bit-positions i owns

according to S(r, π(i), H), and zero elsewhere. From

secrets Kij that client i shares with each server j, i
computes pseudo-random strings cij = PRNG(Kij).
Client i then XORs these strings with message mi to

produce ciphertext ci = m⊕ ci1 ⊕ · · · ⊕ ciM , which i
signs and transmits to one or more servers.

3. Output: Each client i waits for a message from any

server containing round r’s cleartext output signed by

all servers: (r, ~m, ~sig). Client i verifies all servers’ sig-

natures, extracts the messages in all slots, then pro-

ceeds to round r + 1 by repeating from step 2.

nets, all nodes broadcast messages to all other nodes. Dis-

sent reduces the number of communication channels by a

factor of N by organizing clients and servers into a two-

level hierarchy. Clients communicate with only a single

server, and servers communicate with all other servers.

This optimization does not make a client’s anonymity

dependent on the particular server it chooses to con-

nect to, because anonymity depends on the secret-sharing

graph described above and not on physical communi-

cation topology. Since each client shares a secret with

all servers, even if a client’s directly upstream server is

malicious, that server cannot decode the client’s anony-

mous transmissions except with the cooperation of all

the servers, including the honest one we assume exists.

A server can DoS-attack an attached client by persis-

tently dropping its submitted ciphertexts, but the client

will recognize such an attack from the absence of its clear-

texts in the group’s output—which all servers must sign—

signaling the client to switch to a different server.

To reduce communication costs further, servers lo-

cally combine their pseudo-random strings with their

clients’ ciphertexts. Servers thus avoid forwarding indi-

vidual client ciphertexts to other servers, reducing total

communication complexity from O(N2) to O(N +M2)
when M ≪ N . Related optimizations reduce the num-

ber of signature verifications a client performs from O(N)
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Algorithm 2 Dissent Server DC-net Protocol

1. Submission: In each round r, each server j collects

ciphertexts ci from some clients i, until all of j’s

directly-connected clients have responded or the round

closure deadline has passed.

2. Inventory: Server j forms a list ~lj of client identities

from whom j has received ciphertexts by the deadline,

then broadcasts this list to the other servers.

3. Commitment: Given all servers’ vectors lj , the

servers deterministically trim redundant entries for

clients who submitted ciphertexts to multiple servers,

yielding new lists l′j , then form a composite client list

l =
⋃

j l
′

j . If the round r participation count pr = |l|
is below a policy-defined fraction α of the previous

round’s participation count pr−1, the servers return to

step 1 and wait for more clients to submit ciphertexts.

Otherwise each server j computes pseudo-random

strings sij = PRNG(Kij) from the shared secrets Kij

of clients i ∈ l, and XORs these strings with the client

ciphertexts j received directly, forming server cipher-

text sj = (
⊕

i∈l sij)⊕(
⊕

i∈l′
j
cij). Server j computes

a commit Cj = HASH(sj) and sends Cj to all servers.

4. Combining: Upon receiving all other servers’ commit,

server j shares sj with the other servers.

5. Certification: The servers verify Cj = HASH(sj) for

all j, and form cleartext output ~m =
⊕

j sj . Each

server j signs ~m, and sends its sigj to all servers.

6. Output: Servers collect all signatures sigj into ~sig,

then distribute (r, ~m, ~sig) to directly attached clients.

to O(M) and the number of messages clients must parse

from O(N) to O(1) (see Algorithm 1, steps 2, and 3).

3.6 Tolerating Network Churn

More important than reducing the computational load on

clients, Dissent’s client/server secret-sharing graph en-

ables the servers to collaborate to reduce the group’s vul-

nerability to client disconnection and churn, as well as

deliberate DoS attacks by malicious clients. In conven-

tional online DC-nets, if any member goes offline, all

other members must recompute and resend new cipher-

texts, omitting the PRNG stream they shared with the

failed member. The chance that a given round will have

to be “re-run” in this way increases dramatically as group

size and client churn increase.

Since Dissent clients share secrets only with the servers

and not with other clients, a client’s ciphertext is indepen-

dent of the online status of other clients. The servers can

therefore complete a messaging round even if some clients

Figure 4: Dissent DC-net protocol.

disconnect at arbitrary points during the round, or other-

wise fail to deliver their ciphertexts before a deadline. The

servers first collect those client ciphertexts that arrive in

time, then agree among each other on the complete set of

client ciphertexts available (the union of all servers’ client

ciphertext sets), and finally XOR these client ciphertexts

with the pseudo-random strings each server shares with

those clients to form the servers’ ciphertexts. Thus, client

delays or disconnections never require servers to inter-

act with clients iteratively within the same round, as they

would in standard DC-nets to obtain revised ciphertexts.

3.7 Participation and Anonymity Metrics

To ensure “strength in numbers,” users may wish to send

anonymous messages only when at least some number of

other group members are online and participating. Since

the servers know the set of clients who are online and

successfully deliver ciphertexts each round, the servers

publish a participation count for each round. A user who

judges this count to be too low can continue to participate

passively in the group but send only an empty (“null”)

message in each round until participation increases.

Servers can publish participation counts only for past

rounds, but clients can come and go at any time. A client

thus might decide to send a message on the basis of one

round’s high participation count, and submit a sensitive

message in the next round, only to discover after the round

completes that far fewer clients remained online or deliv-

ered their ciphertexts in time. A powerful adversary might

even start a DoS attack against many honest clients just as

a sensitive anonymous posting is anticipated, in hopes of

isolating and exposing the poster this way.

To address such risks, if the last round’s participation

count was P , the servers will not complete the next round

until at least αP clients submit ciphertexts, where 0 ≤
α ≤ 1 is a policy constant defined at group creation time.

If fewer than αP clients submit ciphertexts by the round’s

6



deadline, the servers keep waiting until at least αP clients

show up, or until a much longer hard timeout occurs. On

a hard timeout, the servers discard all clients’ ciphertexts,

report the round as failed, and publish a new participation

count on whose basis the clients make fresh decisions for

the next round. The fraction α thus limits the rate at which

participation may decrease unexpectedly round-to-round.

While Dissent can guarantee users that a sensitive mes-

sage will be posted only when participation is at some

threshold level, participation count unfortunately offers

only an estimate of anonymity set size. If some partici-

pants are dishonestly colluding with the adversary, a client

is anonymous only among the set of honest participants.

A group’s risk of infiltration of course depends on how it

is formed and managed. In our current approach where

a group is defined by a static list of public keys (Sec-

tion 3.2), the dishonest members are those whose pub-

lic keys the adversary manages to persuade the group

creator to include in the list at definition time, plus any

formerly-honest members who the adversary might com-

promise after group formation. Since users cannot ulti-

mately know how many of their peers may be “spies,” es-

timating anonymity necessarily remains subjective.

3.8 Eliminating Empty Slot Overhead

In typical blogging or chat applications we expect many

clients to be silent much of the time, sending null mes-

sages in most rounds and real messages only occasion-

ally. To optimize this common case, Dissent’s scheduling

scheme gives each client two slots: a one-bit request slot

and a variable-length message slot. Initially the message

slot is closed, with length 0. When a client sets its request

bit in round r, its message slot opens to a fixed size in

round r+1. The message slot includes a length field, with

which the client can adjust the slot’s length in subsequent

rounds: to send a larger message efficiently in round r+2,

for example, or to close its message slot back to length 0.

A dishonest member could DoS attack another client by

guessing when the victim will transmit and sending a 1 in

the victim’s request slot, cancelling the victim’s open re-

quest. To address such attacks, a client first sets its request

bit unconditionally, but if its slot fails to open, the client

randomizes its request bit in subsequent rounds, ensuring

success after t+ 1 rounds with probability 1− ( 12 )
t.

3.9 The Accusation Process

Dishonest members can disrupt DC-nets in general by

XORing non-zero bits into other members’ slots, cor-

rupting the victim’s cleartext. Earlier approaches to this

challenge used complex trap protocols [58], expensive

pairing-based cryptography [36], or required a costly

shuffle before every DC-nets round [20]. Herbivore [35]

mitigates the risk of disruption by limiting clique size and

the rate at which disruptors can join them, at the cost of

small anonymity sets and potentially increased vulnera-

bility when disruptors are common [10].

Dissent introduces a new accusation scheme that adds

little overhead in the absence of disruptors, but enables

the servers to identify and expel a persistent disruptor

quickly with high probability. The overall scheme oper-

ates in three stages. First, the victim of a disruption must

find a witness bit in some round’s DC-net output, which

we define as a bit that was 0 in the victim’s cleartext,

but which the disruptor flipped to a 1. Second, the victim

anonymously broadcasts an accusation, a message signed

with the victim’s pseudonym key identifying the witness

bit. Finally, the servers publish all PRNG outputs that con-

tributed to the client and server ciphertexts at the witness

bit position, using them to trace the client or server that

XORed an unmatched 1 bit into this position. The signed

accusation attests that the traced node must be a disruptor.

The first challenge is ensuring that a disruption victim

can find a witness bit. If a disruptor could predict the vic-

tim’s cleartext output—or discover it from other honest

nodes’ ciphertexts before computing its own ciphertext—

then the disruptor could avoid leaving witness bits by

flipping only 1 bits to 0 in the victim’s slot. To make

all cleartext bits unpredictable, clients apply a crypto-

graphic padding scheme analogous to OAEP [7]. The

client picks a random seed r, generates a one-time pad

s = PRNG{r}, XORs it with the original message m,

and transmits r||m⊕ s in the client’s message slot. Since

clients submit their ciphertexts before the servers compute

theirs, and the commitment phase in Algorithm 2 prevents

dishonest servers from learning honest servers’ cipher-

texts before computing their own, any disruptive bit-flip

has a 1/2 chance of producing a witness bit.

The second challenge is enabling the victim to trans-

mit its accusation: if it did so via DC-nets, the disruptor

could simply corrupt that transmission as well. To avoid

this catch-22, Dissent falls back on the less efficient but

disruption-resistant verifiable shuffle it uses for schedul-

ing. Each client’s DC-net message slot includes a k-bit

shuffle request field, which the client normally sets to 0.

When a disruption victim identifies a witness bit, it sets

its shuffle request field in subsequent rounds to a k-bit

random value. Any nonzero value signals the servers to

start an accusation shuffle, in which the victim transmits

its signed accusation. The disruptor may try to squash the

shuffle request, but succeeds with at most 1−( 12 )
k chance,

and the victim simply retries until it succeeds.

The final challenge is tracing the actual disruptor. An

accusation consists of the round number in which the dis-
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ruption occurred, a slot index π(i), and the index k of a

bit the disruptor flipped from 0 to 1 in this slot, all signed

by the slot owner’s pseudonym key, k′
π(i). On receiving

an accusation, the servers verify its signature, and check

that the indicated bit was indeed output as 1. The servers

then recompute and exchange all the individual PRNG

bits that the clients and servers should have XORed to-

gether to compute their ciphertexts: cij [k] in Algorithm 1

and sij [k] in Algorithm 2. Each server independently at-

tempts to find a mismatch, where: (a) a server did not

transmit the full set of client ciphertext bits; (b) the accu-

mulation of transmitted bits do not match what the server

sent out earlier: sj [k] 6= (
⊕

i∈l sij [k])⊕ (
⊕

i∈l′
j
ci[k]); or

(c) the client’s ciphertext bit does not match the accumu-

lation across servers:
⊕

j sij [k] 6= ci[k], for some client

i. The first two cases trivially expose a server as dishon-

est. In the final case, each server requests from client i a

rebuttal on why the set of server bits, sij [k], are incorrect,

namely which server equivocated. An honest client can

respond with the malicious server’s identity, their shared

secret, and proof of this shared secret.

3.10 Scheduling via Verifiable Shuffles

Dissent uses verifiable shuffles [11, 32, 44] both to sched-

ule and distribute pseudonym keys for subsequent DC-

nets rounds, and for transmitting accusations to servers.

Clients submit messages (or keys to be anonymized) to

the shuffle protocol, and the shuffle outputs a random per-

mutation of these messages (or keys), such that no subset

of clients or servers knows the permutation. Dissent de-

pends minimally on the shuffle’s implementation details,

so many shuffle algorithms should be usable.

Dissent uses Neff’s verifiable shuffle [44] to cre-

ate verifiable secret permutations, and Chaum-Pedersen

proofs [15] for verifiable decryptions. To shuffle, each

client submits an ElGamal-encrypted group element. In

a general message shuffle, clients embed their messages

within a group element, encrypt it with a combination of

all server keys, then transmit it to first server, who shuffles

the input and removes a layer of encryption. Each server

shuffles and decrypts in turn, until the last server reveals

the cleartexts and distributes them to all clients.

The design supports both general message shuffles and

more efficient key shuffles. Since Neff’s algorithm shuf-

fles ElGamal ciphertexts, general messages must be em-

bedded within group elements. The entries of a key shuf-

fle are already group elements, however, thus requiring no

message embedding. Key shuffles also permit the use of

more computationally efficient groups that are suitable for

keys but not for message embedding.

3.11 Limitations

This section discusses a few of Dissent’s shortcomings

and possible ways to address them in future work.

Large networks with many groups Our evaluations

(Section 5) demonstrate that a single Dissent network can

accommodate over 5,000 clients. To be broadly usable at

Internet scale, Dissent must scale to much larger network

sizes, of hundreds of thousands of nodes or more. One

way to serve very large networks would be to adopt a tech-

nique introduced by Herbivore [35]: break the overall net-

work into smaller parallel Dissent groups—with tens of

servers and thousands of clients each. A secure join pro-

tocol, as in Herbivore, could protect a single session from

being overrun with Sybil identities.

Intersection attacks Dissent’s traffic analysis resis-

tance does not protect against membership intersection

attacks, where an adversary correlates linkable anony-

mous transmissions to changes in clients’ online status. If

an anonymous blogger posts a series of messages, each

signed by the same pseudonym but posted in different

rounds, and the adversary sees that only Alice was online

in all of those rounds (though many other group members

were present in some rounds), the adversary might pin-

point Alice as the blogger. There is no perfect defense

against intersection attacks when online status changes

over time [39]. Dissent users could gain some protection

against the intersection attack by avoiding linkable anony-

mous transmissions (e.g., the use of pseudonyms). Alter-

natively, users could adopt a “buddy system,” transmitting

linkable cleartexts only when all of a fixed set of “bud-

dies” are also online. With certain caveats, this discipline

ensures that a user’s anonymity set includes at least his

honest buddies, at the availability cost of making the user

unable to transmit (safely) when any buddy is offline.

Handling server failure Dissent addresses network

churn only among clients: if a server goes offline, the pro-

tocol halts completely until all servers are available again

or the group is administratively re-formed to exclude the

failed server (which currently amounts to creating a new

group). We expect that Byzantine fault-tolerance tech-

niques [12] could be adapted to mask benign or malicious

server failures, at a cost of imposing a stronger security

assumption on the servers. In a BFT group designed to tol-

erate f concurrent failures, for example, client anonymity

would likely depend on at least f+1 servers being honest,

rather than just one. A malicious group leader could form

a live “view” deliberately excluding up to f honest and

online servers, replacing them with f dishonest servers

who appear live and well-behaved but privately collude in

attempt to de-anonymize clients.
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Group management and server selection As dis-

cussed in Section 3.2, Dissent groups currently contains

a static list of clients and servers; allowing more dy-

namic group administration while maintaining security re-

mains an important challenge. In a public Dissent deploy-

ment with hundreds of servers and thousands of paral-

lel groups, users would benefit especially from automatic

server selection. Since the user must trust at least one of

the servers, a server selection algorithm might have to

consider which servers user trusts, how close the user is

to which servers, a server’s reliability, and other security

and performance factors. Dissent’s server selection prob-

lem is likely analogous to the path selection problem in

Tor [6, 28], and might build on prior work on this topic.

Mobile devices In the United States, consumers now

use mobile phones more for Internet browsing and non-

voice data transfer than for making phone calls [61]. As

everyday computing shifts to mobile devices, an ongo-

ing challenge is to offer users the same privacy protec-

tions on phones as they would have on desktop comput-

ers [8,33,34]. We have yet to deploy or test Dissent on mo-

bile devices, but expect Dissent’s computation and com-

munication optimizations to be useful in this context.

Formal security analysis While Dissent is based on

techniques with formal security proofs [14, 15, 44], a full

formal analysis of Dissent remains for future work.

4 Implementation

This section describes the current Dissent prototype and

how we have applied it to two anonymous communica-

tion use cases: wide-area group messaging and local-area

anonymous Web browsing.

4.1 Prototype Overview

We have implemented Dissent in C++ with the Qt frame-

work and the CryptoPP cryptography library. The proto-

type implements the complete Dissent anonymity proto-

col along with the accountability sub-protocols described

in Section 3.9. The system assumes the existence of a cer-

tificate authority (or other entity) that manages the long-

term public keys of all servers and clients. The prototype

also assumes that participants have used an outside chan-

nel to agree upon a common set of servers. Source code

may be found at the Dissent project home page.1

User applications interact with a node running our Dis-

sent prototype using HTTP API calls or a SOCKS proxy

interface. The HTTP API allows clients to post raw mes-

sages (byte-strings) directly into the protocol session. The

prototype’s SOCKS v5 proxy allows users to tunnel TCP

1 http://dedis.cs.yale.edu/2010/anon/

and UDP traffic flows transparently through the Dissent

protocol session. One or more nodes in the Dissent net-

work serve as SOCKS entry nodes, which listen for in-

coming SOCKS proxy requests from user applications

(e.g., Skype or Firefox). The entry node accepts SOCKSi-

fied traffic flow from the user application, assigns the flow

a random identifier (to allow a receiving node to distin-

guish between many flows), adds destination IP and port

headers to the flow, and sends it into the active Dissent

protocol round. A single SOCKS exit node (who is a non-

anonymous protocol participant) reads the tunneled traf-

fic from the Dissent protocol round, forwards it over the

public network to the destination server, and sends the re-

sponse back through the Dissent session.

4.2 Anonymous Microblogging Application

Dissent’s decentralized architecture and trust model make

it potentially attractive as a substitute for commercial mi-

croblogs in high-risk anonymous communication scenar-

ios. Since Dissent relies on no single trusted party, we ex-

pect it to be much more challenging even for a power-

ful adversary—such as an authoritarian government or its

state-controlled ISP—to identify an anonymous blogger

without compromising all participating Dissent servers.

In our evaluation section, we present performance re-

sults for a prototype microblogging system running on

PlanetLab with up to 2,000 nodes and DeterLab with

up to 5,000 nodes. A simple chat-like Web interface al-

lows users to post short messages into an Dissent proto-

col session using our HTTP API. Our results suggest Dis-

sent could form a practical platform for Internet-scale mi-

croblogging in situations requiring stronger security prop-

erties than the current commercial platforms offer.

4.3 Local-Area Web Browsing

When deployed in a local-area network, Dissent

can provide interactive communication with local-area

anonymity: requests are anonymous among a local set of

users. To demonstrate this use of Dissent, we have de-

veloped WiNoN, a system that uses virtual machines to

isolate a user’s identifiable OS environment from their

anonymous browsing environment, an important issue

given that browser signatures have a reasonable chance

of uniquely identifying a user [27].

In WiNoN, depicted in Figure 5, the Dissent client soft-

ware runs on the host OS with network traffic from the

WiNoN VM tunneled through the Dissent SOCKS proxy.

Since applications in the WiNoN VM have no access to

the network interface or to the user’s non-anonymous stor-

age, they are unable to learn the user’s long-term identity

(unless the user inadvertently enters some identifiable in-

formation into the WiNoN VM).
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Figure 5: WiNoN system diagram. Traffic from the anony-

mous VM flows through an Dissent tunnel to an exit node.

The exit node reads traffic from the tunnel and forwards it

onto the Internet on behalf of the WiNoN client.

On simulated WiFi networks with tens of nodes and

typical bandwidth and delay parameters, we find the

WiNoN anonymization network fast enough for browsing

the Internet and streaming videos. Prior work uses virtual

machines to isolate network environments [41] and tunnel

traffic through Tor [55]. No previous system to our knowl-

edge, however, enables a user to run Flash movies, Skype,

and other untrusted applications safely and anonymously.

5 Evaluation

This section first examines Dissent’s ability to handle un-

reliable client nodes. Next we evaluate Dissent’s perfor-

mance and scalability in instant-messaging and data shar-

ing scenarios with varying numbers of clients and servers.

We then explore the costs of different protocol stages: the

initial key shuffle, a DC-net exchange, and finally the ac-

cusation process. Finally, we evaluate the performance of

Dissent applied to the WiNoN Internet browsing applica-

tion described in section 4.3.

In our evaluations, we used the Emulab [29], Deter-

Lab [23], and PlanetLab [16] testbeds, and nodes from

Amazon’s EC2 service. Emulab and DeterLab offer con-

trolled, repeatable conditions on isolated networks, while
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Figure 6: A CDF plot demonstrating the time for a mes-

sage exchange to complete when using four message win-

dow policies.

we used PlanetLab nodes on the public Internet to offer

a more realistic test of Dissent’s ability to handle client

delays and churn. For our evaluations on the public In-

ternet, we used eight server machines—one located at our

university and seven at EC2 sites—located at unique loca-

tions on four different continents, and we used the entire

set of available PlanetLab nodes as clients. We indicate

the exact number of PlanetLab clients where applicable.

5.1 Slow and Unreliable Clients

On public networks, distributed systems must cope with

slow and unreliable machines [47]. Dissent’s servers pre-

vent slow nodes from impeding the protocol’s overall

progress by imposing a ciphertext submission window.

Once the client submission time window has closed,

servers continue executing the protocol even if every

client has not submitted a ciphertext. Larger windows po-

tentially allow more clients to participate in each message

exchange, but increase messaging latency. Smaller win-

dows size reduce latency of exchanges but might prevent

slower clients from participating.

To help us select an effective window closure policy for

our evaluations on PlanetLab, we collected a data trace

from a Dissent deployment with over 500 clients running

on PlanetLab nodes and eight servers running on EC2, us-

ing a static window size of 120 seconds. The exact number

of clients varied over the course of the 24-hour evaluation

period. We used the data from this PlanetLab experiment

to test a variety of window closure policies.

To ensure that most clients are able to participate in

each message exchange, we do not close the submission

window until at least 95% have submitted messages. Once
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95% of clients submit messages, we multiply the time

elapsed by a constant factor to determine window time.

The fraction of clients who missed the submission win-

dow decreased as this multiplicative constant increased:

1.1×: 2.3%, 1.2×: 1.5%, and 2×: 0.5%. The data in Fig-

ure 6 demonstrate that the client submission time is not

very sensitive to multiplicative constant used. For the rest

of the evaluation, we chose the 1.1× policy, since there

was not significant variation among the three.

Regardless of the specific window closure policy cho-

sen, Figure 6 demonstrates the importance of insulating

the group’s progress from that of its slowest clients in

an unpredictable environment like PlanetLab. In the base-

line case where the servers wait until all clients submit

or a 120-second hard deadline is reached, 50% of DC-

net rounds are delayed by “stragglers” by an order of

magnitude or more compared with early-cutoff policies,

and 15% of rounds are delayed until the 120-second hard

deadline versus almost none with early cutoff policies.

5.2 Wide-Area Applications

To evaluate Dissent’s usability in wide-area microblog-

ging or data sharing scenarios, as described in Section 4.2,

we evaluated the protocol on both DeterLab [23] and

PlanetLab [16]. On DeterLab, which offered controlled

test conditions and greater hardware resources, we eval-

uated both a microblog and data sharing like behavior; we

evaluated only the microblog scenario on PlanetLab.

To simulate a plausible traffic load in the microblog

scenario, a random 1% of all clients submit 128-byte mes-

sages during any particular round. In the data sharing sce-

nario, one client transmits a 128KB message per round.

Due to time and resource limitations, the DeterLab

evaluation used two system topologies: 32 servers with 10

client machines per server, and 24 servers with 12 client

machines per server, for a total of 320 and 288 client ma-

chines respectively. To simulate a larger number of Dis-

sent client participants than we had physical testbed ma-

chines for, we ran up to 16 Dissent client processes on

each client machine, for up to 5120 client processes.

In the testbed topology, servers shared a common 100

Mbps network with 10 ms latency, while clients shared

a 100 Mbps uplink with 50 ms latency to their common

server. We intended the servers to share a 1000 Mbps net-

work, but the testbed did not support this configuration.

For the PlanetLab tests, we deployed 17 servers: 16 on

EC2 using US East servers and one control server located

at Yale University. The latency between Yale and EC2 was

approximately 14 ms round trip. This clustered setup is in-

tended to represent a deployment scenario in which mul-

tiple organizations offer independently-managed Dissent

servers physically co-located in the same or geograph-
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Figure 7: Time per round in microblog (1% submit) and

data sharing scenarios, for varying number of clients.

ically nearby data centers, facilitating high-bandwidth

and low-latency communication among the servers while

keeping their management decentralized for security.

Figure 7 shows the system’s scalability with client load

by varying the number of clients relying on a static set of

32 servers. Figure 8 in turn varies the number of servers

while maintaining a static set of 640 clients. At smaller

group sizes, additional servers do not benefit performance.

As demands on the servers scale, however, their utility

becomes more apparent, especially in the 128K message

scenario. Performance appears to be dominated by client

delays, namely the time between clients receiving the

previous round’s cleartext and the servers receiving the

current round’s ciphertext message. However, in compar-

ing the PlanetLab evaluation to the DeterLab evaluation

and server size of 1, we can ascertain that latency be-

tween servers tends to dominate delays in that environ-

ment, though computational load is not negligible.

The prototype shows greatest usability for group sizes

up to 1,000; thereafter delays become longer than 1 sec-

ond in the microblogging scenario. At best, delays were

on the order of 500 to 600 ms for 32 to 256 clients. In

the static client network, varying server count, showed

time increases on server-related aspects of the protocol

but reduced time on client-related aspects. We therefore

expect that with greater demand—either in terms of nodes

or bandwidth—client-related costs are likely to dominate.

In comparing the microblogging and 128K message

scenarios, the graphs suggest that bandwidth tends to

dominate for larger messages and latency for smaller

messages. Most importantly, the evaluations suggest that
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Dissent can support delay-sensitive applications like mi-

croblogs and instant messaging.

5.3 Full System Evaluation

While the previous experiments focused on measuring

DC-nets rounds, the primary focus of this paper, we now

explore time durations in a single full execution of the

entire Dissent protocol: key shuffle, a single DC-net ex-

change, accusation shuffle, and accusation tracing. Our

results shown in Figure 9 used the same DeterLab con-

figuration consisting of 24 servers with 12 clients each

configuration as described in the previous section. In con-

trast to verifiable mix-nets, the Dissent protocol’s DC-nets

round is extremely efficient, accounting for a negligible

portion of total time in large groups.

The time difference between accusation and key shuf-

fles illustrate the performance benefits of the key shuffle

discussed in Section 3.10. In small groups the accusation

shuffle is reasonably fast, but in larger groups its cost in-

creases quickly, to over an hour for 1,000-client groups.

5.4 Web Browsing: Dissent and Tor

To explore the practicality of Dissent for local-area

anonymity as described in section 4.3, we deployed a

smaller-scale Dissent network of 5 servers and 24 clients

on the Emulab [29] network testbed. The testbed’s exper-

imental network topology approximated the characteris-

tics of a small WiFi network: each node was connected

to a central switch via a 24 Mbps link with 10 ms of la-

tency. One of the servers acted as a gateway connecting

the private test network to the public Internet.

In this environment, we ran an automated HTTP

browser on one of the client nodes to download the in-
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Figure 9: Time elapsed during a whole protocol run for

varying client sizes, 24 servers, and 128 byte messages.

dex pages from each site on the Alexa “Top 100” Web

sites [3] from the real public Web server. For each in-

dex page, the client requested the HTML page and then

recursively and concurrently requested dependent assets

(images, CSS, JS, etc.). Although we used an automated

HTTP browser for these trials, Dissent supports standard

Web browsers as well.

We used four different network configurations to test

Dissent’s performance under four deployment scenarios.

In the first scenario, no anonymity, the gateway connects

directly to the public Internet. The second scenario, Tor

alone, shows the performance of state-of-the-art wide-

area anonymous Internet access. We emphasize that we

compare with Tor only to provide a general reference

point for gauging Dissent’s usability: this is by no means

an “apples-to-apples” comparison since the functionality,

scale, security properties, and network conditions of the

two systems under test are incomparable in myriad ways.

The third test scenario, a local-area deployment of Dis-

sent, is intended to test whether Dissent is fast enough

for interactive browsing on local-area networks. The

fourth scenario, a serial composition of Dissent and Tor,

considers the performance of a configuration offering

“best of both worlds” security, where we compose a

local-area Dissent network with the public Tor network.

This configuration offers users Tor’s wide-area anonymity

against limited-strength adversaries, combined with Dis-

sent’s local-area security against adversaries who might

use traffic analysis to de-anonymize Tor circuits.

The results in Figure 10 indicate that anonymous web

browsing under the local-area deployment of Dissent we

tested performs comparably to Tor, suggesting that users

are likely to find some Dissent configurations similarly
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Figure 10: Download times for the Alexa “Top 100” home

pages in which nodes access the Internet over an Dissent

network running on an Emulab-simulated wireless LAN,

over the public Tor network, and over a composition of

wLAN Dissent and Tor.

Figure 11: CDF of download times presented in Figure 10.

usable under appropriate network conditions. On average,

downloading 1MB of Web content took 10 seconds with

no anonymization, it took 40 seconds through Tor, 45 sec-

onds with Dissent, and 55 seconds with Dissent and Tor

together. Comparing Dissent+Tor with Tor alone, this data

suggests that a user willing to tolerate a 35% slowdown

could retain Tor’s wide-area benefits while gaining traffic

analysis resistant anonymity in the user’s local area.

Figure 11 shows a CDF of page download times, show-

ing that a client using Tor downloads the first 50% of Web

pages in 15 seconds, while a client using Dissent+Tor

downloads 50% of Web pages in just under 20 seconds.

We expect that many users, especially those with strong

security requirements, might find a few extra seconds per

Web page a reasonable price for local-area security.

6 Conclusion

This paper has made the case that by delegating col-

lective trust to a decentralized group of servers, strong

anonymity techniques offering traffic analysis resistance

may be adapted and scaled to offer anonymity in groups of

thousands of nodes, two orders of magnitude larger than

previous systems offering strong anonymity. Through its

novel client/server DC-nets model, Dissent is able to ac-

commodate anonymity set sizes of up to 5,000 members,

while maintaining end-to-end latency low enough to en-

able wide-area interactive messaging. In local-area set-

tings, Dissent is fast enough to handle interactive Web

browsing while still offering users strong local anonymity

guarantees. Although Dissent represents a step towards

strong anonymous communication at large Internet scales,

many challenges remain for future work, such as further

scalability and robustness improvements and protection

against long-term intersection attacks.
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