
Certificate Cothority: Towards Trustworthy Collective CAs
Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, and Bryan Ford

Yale University

1. INTRODUCTION
Our online infrastructure depends on authorities that provide

conceptually simple but security-critical services, such as times-
tamping, logging, directory listings, digital certificates, or random-
ness. Unfortunately, while we expect and rely on these author-
ities’ trustworthiness, they might in fact be arbitrarily dishonest.
Specifically, the current state of Certificate Authorities (CAs), a vi-
tal component to the public key infrastructure (PKI), exemplifies
the far-reaching consequences of our dependence on organizations
to make unilateral yet security-critical decisions.

Certificate Authorities sign certificates attesting that the holder
of a public key legitimately represents a name such as google.com,
to authenticate SSL/TLS connections. Only if a server can produce
a certificate signed by a trusted CA, will the client’s browser ac-
cept it and establish a secure connection. Current web browsers
directly trust dozens of root CAs and indirectly trust hundreds of
intermediate CAs, any one of which can issue fake certificates for
any domain since only contractual obligations limit the scope of
each CA. An adversary can easily use a fake certificate for attacks
such as website spoofing and man-in-the-middle attacks.

Issues with CAs range from malicious actions, incompetency,
cooperation with governments, and security breaches. It takes only
one such CA to threaten the security of the entire PKI and in turn,
everyone on the Internet. Due to this “weakest-link” security, hack-
ers have stolen the “master keys” of CAs such as DigiNotar and Co-
modo issuing fake certificates covering a bulk of the Internet traffic.
Moreover, CAs themselves abused certificate-issuance mechanisms
as in the recent CNNIC/MCS incident, where the Chinese CA is-
sued an unconstrained certificate allowing the Egyptian company
MCS Holdings to produce certificates trusted by any major browser
or operating system.

There is virtually no oversight over CAs beyond voluntary, in-
dustry organizations. Browser and OS vendors hold the most gov-
erning power over CAs as they can remove a CA from their root
store in case of a misbehavior or compromise. This is not a reliable
mechanism, however, after the recent breach Mozilla and Google
removed CNNIC them from their root stores while Apple did not.

We now find ourselves in a situation where much of our sensi-
tive communication happens on the Internet. This communication
is only as secure as the weakest link in the CA system, with almost
the only line of defense being a handful of browser and OS ven-
dors who themselves do not have a unified vision of how to handle
trust and security breaches. With applaudable efforts on the rise,
such as “Let’s Encrypt"1 aiming to make encryption on the Internet
ubiquitous, it is more important than ever to finally provide a solid
foundation to the PKI system.

2. CURRENT DEFENSES
After many CA breaches, as a stopgap, browsers such as Chrome

and Firefox hard-code pinned certificates for particular sites or par-
ticular CAs for each site – but browsers cannot ship with hard-
coded certificates or CAs for each domain for the whole Web. Al-

1https://letsencrypt.org/

ternatively, browsers pin the first certificate a client sees protecting
a site’s regular users but not new users.

More general and currently pushed for mitigations for CA weak-
nesses rely on logging and monitoring certificates as proposed in
systems like AKI [4], PoliCert [8], and the most popular and actu-
ally deployed Certificate Transparency [5].

Certificate Transparency requires CAs to insert newly-signed cer-
tificates into public logs, which a larger body of monitors and au-
ditors check for consistency and invalid certificates. Monitoring
can unfortunately detect misbehavior only retroactively – e.g., af-
ter a properly-signed but fake certificate has appeared – placing
victims in a race with the attacker. Web browsers could check all
certificates they receive against such logs and/or via multiple Inter-
net paths but such checks add delays to the critical page-loading
path. Further, these approaches assume Web users can connect to
independent logging, monitoring, or relaying services without in-
terference, but this assumption fails when the user’s own ISP is the
adversary – a scenario that has unfortunately become all too realis-
tic whether motivated by state-level repression or profit.

3. OVERVIEW AND BUILDING BLOCKS
We propose to replace current, high-value certificate authorities

with a certificate cothority (CC) – a practical system, which em-
bodies strongest-link security by allowing all participants to vali-
date certificates before they are issued and endorsed, and therefore
proactively prevent their misuse.

We build certificate cothorities using an instantiation of a large-
scale, general collective authority, which we call cothority. The ba-
sic goal is to split trust across a large and diverse body of independently-
run servers. Each of potentially thousands of hosts comprising a
cothority independently validates each public output, contributing
a share of a collective digital signature to each validated output,
or withholding its signature and raising an alarm if misbehavior is
detected. Clients can validate a cothority’s output – such as an en-
dorsed certificate, but also timestamp, or random number – using a
single inexpensive cryptographic operation comparable to conven-
tional signature verification. This collective signature attests to the
client that not just one but many well-known servers (ideally thou-
sands) independently checked and signed off on that output. There-
fore, a cothority guarantees strongest-link security whose strength
increases as the collective grows, instead of decreasing to weakest-
link security as in today’s CA system.

Below we briefly summarize our ideas on how to build general
cothorities but refer the reader to our technical report [7] for details.

CoSi: Collective Signing
Each cothority is implemented by a single instance of CoSi, the first
practical collective signing protocol we know of to build large-scale
cothorities based on existing schemes such as threshold signatures,
aggregate signatures and multisignatures [1, 6],

First, to allow CoSi to scale to thousands of servers, we limit the
computation and network bandwidth costs imposed on each partic-
ipating server by using tree-based communication structures com-
parable to those long used in multicast protocols [2].

https://letsencrypt.org/


In a single round of CoSi, the leader, a distinguished node trusted
only with availability, proposes a new record – a single element or
a cryptographic summary of many elements in a form of a Merkle
tree built on those elements – to be validated and publicly recorded
in a tamper-evident log. Then, the leader coordinates with all of its
signers to validate the log entry and generate a collective signature
for it, which we implement using a Schnorr multisignature [1, 6].
The result is a collectively signed log entry, which anyone may
check against the cothority roster.

Schnorr multisignatures are especially suitable for cothorties: (i)
each signer retains its own private/public key pair and the constant-
size collective signature verifies under a single, aggregate public
key efficiently calculated using only individual public keys; and
(ii) the signature can be incrementally generated in a leaf-to-root
traversal of a communication tree in a way that each server’s com-
putation and communication costs depend directly only on its num-
ber of immediate children, yielding O(logN) per-node costs in a
O(logN)-depth tree.

We have built a working cothority server prototype2 implement-
ing collectively signed logging, timestamping, and vote-counting
services. Experimental evaluations on DeterLab [3] demonstrate
that the prototype scales easily to over 4000 participant servers,
handles hundreds of thousands of client requests per second in ag-
gregate, with typical latencies of only 1–5 seconds – delays easily
tolerable by typical authority services.

4. CERTIFICATE COTHORITY
Our goal is to demonstrate that replacing the current “weakest-

link” CA system with a “strongest-link” certificate cothority is com-
pelling and practical. The encouraging performance results of our
general cothority prototype lead us to believe that we can build a
trustworthy, collective CA system using theoretically established
and well-understood techniques.

Principles of Operation
We envision federating today’s hundreds of CAs along with browser
vendors and security companies into a single certificate cothority.
In our architecture, each participant can validate certificates pro-
posed by all other CAs before they are collectively signed, raising
an alarm and proactively preventing the signing of fake certificates
in the first place. Once signed, each certificate would still be ver-
ified by a single signature, but that signature would embody much
stronger and broader-based trust of the entire certificate cothority.

A certificate cothority periodically, depending on the volume of
certificate requests, invokes a new certificate signing round to col-
lectively endorse newly-generated certificates. During each round,
each participating CA proposes a set of new certificates, which is
made available for everyone to verify. Hence, every CA is given an
opportunity to inspect all newly-proposed certificates and to watch
for and proactively block the signing of unauthorized certificates,
such as certificates proposed by a CA that is not recorded as having
contractual authority over a given domain. There are several ways
for CAs to validate certificates. For example, the CA currently re-
sponsible for a domain such as google.com could verify that
no other CA proposes a google.com certificate. Alternatively,
each CA could use a global CC policy defining the scope of each
CA’s authority and perhaps the minimal security and validity re-
quirements (e.g., currently recommended key lengths or encryption
algorithms) for certificates.

After the collective verification phase, the CC moves to the col-
lective approval phase. In this phase, each CA is given an opportu-
2https://github.com/DeDiS/prifi/tree/master/coco

nity to raise objections to any improper certificates, implicitly ac-
cepting the remaining certificates. In the collective signing phase,
CC employs CoSi to only sign certificates without any objections.
CC may utilize administrative oversight to deal with certificates
flagged as bad. Alternatively, CC could use a voting-based over-
ride (also easily accomplished using cothorities) if the majority of
CAs find the certificates in questions to be valid or if a given CA is
being deliberately malicious by trying to stall the progress of CC.

Deploying a Certificate Cothority
While deploying a certificate cothority would be challenging, our
approach offers incremental deployment options with backward com-
patibility for the existing infrastructure. We envision three possible
incremental deployment models. In a browser-centric certificate
cothority, the browser vendor can act as a leader of the cothority,
encouraging (and after a sufficient transition period, demanding)
that root and subsidiary CAs currently included in the browser’s
root store join the browser’s cothority, if they wish to remain in-
cluded. In a root-CA-centric certificate cothority, the root CA may
decide to transition its master key gradually to a collectively signed
key and encourage (and again, eventually require) its subsidiary
delegated CAs to join its cothority instead of wielding independent
delegated CA power. In a CT-centric certificate cothority, a collec-
tion of independent Certificate Transparency log, monitor, and/or
auditor servers form a cothority and collectively endorse CT-style
signed certificate timestamps (SCTs). Those SCTs can be then
included into existing certificates using X.509v3 extension fields,
without otherwise requiring any changes to the actual certificate
signing algorithms or legacy browsers. Web browsers of course
would need to be gradually upgraded to support Schnorr signatures.
During their transition period root CAs could retain traditional root
CA keys for use in older web browsers while embedding a certifi-
cate cothority key instead into suitably upgraded browsers.

We envision that the demand by users, companies, and browser
and OS vendors alike for increased security would greatly assist
in encouraging CAs’ early participation and investment in a CC
infrastructure. We take the deployment of Certificate Transparency
as an encouraging sign of changes to come and feel that there is
no technical reason to continue with the centralized, weakest-link
security we seem to have settled for.

5. REFERENCES
[1] M. Bellare et al. Multi-signatures in the plain public-key

model and a general forking lemma. In CCS, 2006.
[2] M. Castro, et al. SplitStream: high-bandwidth multicast in

cooperative environments. In SOSP, 2003.
[3] DeterLab network security testbed, September 2012.

http://isi.deterlab.net/.
[4] T. H.-J. Kim, et al. Accountable key infrastructure (AKI): A

proposal for a public-key validation infrastructure. In WWW,
2014.

[5] B. Laurie, et al. Certificate transparency, June 2013. RFC
6962.

[6] S. Micali, et al. Accountable-subgroup multisignatures. In
CCS, 2001.

[7] E. Syta, et al. Decentralizing authorities into scalable
strongest-link cothorities. arXiv preprint arXiv:1503.08768,
2015.

[8] P. Szalachowski, et al. PoliCert: Secure and flexible TLS
certificate management. In CCS, 2014.

https://github.com/DeDiS/prifi/tree/master/coco
http://isi.deterlab.net/

	Introduction
	Current Defenses
	Overview and Building Blocks
	Certificate Cothority
	References

