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Abstract—Open communication over the Internet poses a
serious threat to countries with repressive regimes, leading
them to develop and deploy censorship mechanisms within their
networks. Unfortunately, existing censorship circumvention
systems face difficulties in providing unobservable communi-
cation with their clients; this highly limits their availability
as censors can easily block access to circumvention systems
that make observable communication patterns. Moreover, the
lack of unobservability may pose serious threats to their
users. Recent research takes various approaches to tackle
this problem, however they introduce new challenges, and the
provided unobservability is breakable.

In this paper we propose an easy-to-deploy and unobservable
censorship-resistant infrastructure, called FreeWave. FreeWave
works by modulating a client’s Internet traffic into acoustic
signals that are carried over VoIP connections. Such VoIP
connections are targeted to a server, the FreeWave server, that
extracts the tunneled traffic and proxies them to the uncensored
Internet. The use of actual VoIP connections, as opposed to
traffic morphing, allows FreeWave to relay its VoIP connections
through oblivious VoIP nodes (e.g., Skype supernodes), hence
keeping the FreeWave server(s) unobservable and unblockable.
In addition, the use of end-to-end encryption, which is sup-
ported/mandated by most VoIP providers like Skype, prevents
censors from distinguishing FreeWave’s VoIP connections from
regular VoIP connections.

To utilize a VoIP connection’s throughput efficiently we
design communications encoders tailored specifically for VoIP’s
lossy channel. We prototype FreeWave over Skype, the most
popular VoIP system. We show that FreeWave is able to
reliably achieve communication throughputs that are sufficient
for web browsing, even when clients are far distanced from the
FreeWave server. We also validate FreeWave’s communication
unobservability against traffic analysis and standard censorship
techniques.
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I. INTRODUCTION

The Internet is playing an ever-increasing role in con-
necting people from across the world, facilitating the free
circulation of speech, ideas and information. This poses
serious threats to repressive regimes as it elevates their
citizens’ awareness and provides them a powerful medium
to arrange coordinated opposition movements. The recent
unrest in the Middle East [1] demonstrates the very strong
power of the Internet in arranging nation-wide protests
that, in several cases, resulted in revolutionizing or even

overthrowing repressive regimes. In response to such threats,
repressive regimes make use of different technologies to
restrict and monitor their citizens’ access to the Internet; i.e.,
they censor the Internet. Censorship devices leverage various
techniques [2], [3] ranging from simple IP address blocking
and DNS hijacking to the more complicated and resource-
intensive deep packet inspection (DPI) in order to enforce
their blocking and monitoring. Citizens identified as non-
complying with the censors’ restrictions can face different
consequences ranging from Internet service disruption to
severe life-threatening punishments [4].

To help censored users gain open access to the Internet
different systems and technologies have been designed and
developed [5]–[11], generally referred to as censorship cir-

cumvention tools. These systems are composed of computer
and networking technologies that allow Internet users to
evade monitoring, blocking, and tracing of their activities.
We observe that the biggest challenge facing the existing

circumvention systems is the lack of “unobservability”:
while these systems can, under certain conditions, circum-
vent censorship they are not effectively able to hide the
fact that their users are making use of them [5]–[9]. For
instance, the Tor [8] anonymity network is not able to
effectively evade censorship as a censor can block all of
the publicly advertised IP addresses of Tor relays. This has
two major consequences: first, users caught (by censors)
leveraging these circumvention systems may face various
punishments such as imprisoning. Second, and even more
catastrophic, this lack of unobservability usually leads to
the lack of availability; i.e., circumvention systems with
observable communication are easily blocked by censors.
Censors proactively [12] look for Internet services that
help with censorship circumvention and either block any
access to them by their citizens, or leave them (partially)
open to identify their users. In particular, censors rigorously
look for IP addresses belonging to circumvention technolo-
gies (e.g., HTTP/SOCKS proxies) and add them to the IP
blacklists maintained by their censoring firewalls [2], [13].
Consequently, citizens under repressive regimes often find it
difficult to access the existing circumvention systems. For
instance, the popular Tor network has frequently been/is
blocked by several repressive regimes [12], [14].



To provide unobservable circumvention different ap-
proaches have been taken by the research community. Sev-
eral systems [5], [7], [15] provide unobservability by pre-

sharing secrets with their intended clients. The Tor system,
for instance, has recently deployed Tor bridges [15], which
are volunteer proxies whose IP addresses are distributed
among Tor users in a selective manner. This makes Tor
bridges less prone to be identified by censors, as compared
to the publicly-advertised Tor entry nodes, however there
are serious challenges in distributing their IP addresses
among users [16], [17]. In a similar manner, Infranet [5]
and Collage [7] aim for unobservability by pre-sharing some
secret information with their users. This, however, is neither
scalable nor effective as it is challenging to share secrets
with a large number of real users, while keeping them secret
from censors at the same time [18]–[20].

As another approach to provide unobservability, several
systems use various obfuscation techniques. For instance,
Ultrasurf [21] and Psiphon [22] try to confuse content
filtering tools by obfuscating their design and traffic patterns.
Such obfuscation, however, jeopardizes users’ security, as
analyzed in a recent study [23]. Appelbaum et al. propose
pluggable transports [24] for Tor, a platform that allows one
to build protocol-level obfuscation plugins for Tor traffic.
These plugins obfuscate a Tor client’s traffic to Tor bridges
by shaping it to look like another protocol that is allowed by
censors. Obfsproxy [25] is the first Tor pluggable transport.
It adds an additional layer of encryption to Tor traffic to
obfuscate Tor’s content identifiers, like the TLS parameters;
however, it does not remove Tor’s statistical patterns like
packet timings and sizes. Murdoch et al. [26] mention sev-
eral weaknesses for obfsproxy, including being susceptible
to either an active or passive attacker who has recorded
the initial key exchange. StegoTorus [27] provides better
unblockability, but comes with a much higher overhead
[26]. SkypeMorph [28] morphs Tor traffic into Skype video
calls in order to make it undetectable against deep-packet
inspection and statistical analysis. The common issue with
the aforementioned traffic obfuscation techniques is that they
only obfuscate communication patterns, but not the end-
hosts. In other words, while a censor may find it hard to
detect the obfuscated traffic using traffic analysis, it will
be able to identify the end-hosts that obfuscate the traffic
through other active/passive attacks, e.g., SkypeMorph and
StegoTorus relays can be enumerated using prevalent port
knocking techniques [12], [29], zig-zag [30] attack, and
insider attack [31]. Once the identity of a circumventing end-
host is known to a censor the unobservability is completely
lost and the end-host is easily blocked by the censor.
CensorSpoofer [31] is another recent proposal that performs
traffic obfuscation by mimicking VoIP traffic. Like most
of the other designs noted above, CensorSpoofer needs to
pre-share some secret information with the clients, posing
a scalability challenge. In addition, it requires a usable

upstream channel for its operation since its circumvented
traffic is unidirectional.

As another recent trend, several proposals have sought
unobservability by integrating circumvention into the In-
ternet infrastructure [10], [11]. For instance Telex [10]
and Cirripede [11] conceal the circumvented traffic inside
the regular HTTPS traffic thanks to friendly ISPs that
deflect/manipulate the intercepted connections. The real-
world deployment of such circumvention systems requires
collaboration of several trusted ISPs that make software
and/or hardware modifications to their infrastructure; this
does not seem to be realized in short-time until there are
enough financial/political motives for the ISPs. Moreover,
a recent study [32] shows that an adversary capable of
changing routing decisions is able to block these systems.

In this paper we propose FreeWave, a censorship circum-
vention infrastructure that is highly unobservable (hence,
highly available). The main idea of FreeWave, as shown in
Figure 1, is to tunnel Internet traffic inside non-blocked VoIP
communications by modulating them into acoustic signals
that are carried over VoIP connections. For a censored user
to use FreeWave for circumvention, she needs to setup a
VoIP account with a public VoIP provider, and also to install
FreeWave’s client software on her machine. Part of the
FreeWave system is a FreeWave server that listens on several
publicly advertised VoIP IDs to serve FreeWave clients.
To make a FreeWave connection, a user’s FreeWave client
software makes VoIP connections to FreeWave server’s VoIP
IDs. The client and server, then, tunnel the circumvented
Internet traffic inside the established VoIP connections, by
modulating network packets into acoustic signals carried by
the established VoIP connections.

We claim that FreeWave provides strong unobservability
by performing two kinds of obfuscations: traffic obfuscation,
and server obfuscation. First, as FreeWave tunnels Internet
traffic inside actual, encrypted VoIP connections, its traffic
patterns are very hard to be distinguished from benign
VoIP connections. Traffic obfuscation is also aimed for by
recent morphing-based techniques like SkypeMorph [28]
and StegoTorus [27], however, FreeWave provides stronger
traffic obfuscation as it completely runs the target protocol
instead of partially imitating it. The second obfuscation
performed by FreeWave, which is unique to FreeWave, is
server obfuscation, which prevents censors from detecting
circumvented traffic by matching the destination addresses
of traffic. Server obfuscation is an important feature that
similar circumvention systems such as SkypeMorph [28]
and StegoTorus [27] fail to provide. As we describe later
in this paper, the way the FreeWave server is connected
to the Internet results in getting FreeWave’s VoIP traffic
relayed by various, oblivious VoIP peers, preventing a censor
from blocking/identifying FreeWave’s VoIP traffic based on
IP addresses (see Figure 1). For instance, FreeWave con-
nections made through Skype get relayed by Skype supern-



FreeWave
Client

Censoring ISP

Uncensored 
Internet

Encrypted
VoIP connection

FreeWave 
serverOblivious, intermediate VoIP nodes

(e.g., Skype "Super nodes")

Encrypted
VoIP 

connection

HTTP 
connection

Firewall

Figure 1. The main architecture of FreeWave.

odes [33], which are oblivious Skype users residing outside1

the censorship region. As another example, if FreeWave uses
Google Voice, FreeWave connections will get relayed by
Google servers that are oblivious to the circumvention pro-
cess. Server obfuscation, as defined above, is missing in all

previous designs except CensorSpoofer [31]. For instance, in
the case of Tor pluggable transports like SkypeMorph [28]
and StegoTorus [27] once the IP address of the deploying
Tor bridge is revealed to a censor (e.g., using port knocking
[12], [16], [17], [29]) the unobservability is lost and the
censor will be able to identify/block users connecting to
that Tor bridge. In FreeWave, on the other hand, even if

a censor identifies the IP address belonging to a FreeWave

server it will not be able to block connections to it since
users’ connection to that FreeWave server are not direct
connections, but are relayed through varying, oblivious VoIP
nodes. We provide a thorough comparison of FreeWave with
similar obfuscation-based techniques in Section IX.

The strong unobservability of FreeWave makes it highly
unblockable (i.e., available). FreeWave’s availability is tied
to the availability of the VoIP service: since the operation

of FreeWave is not bound to a specific VoIP provider, in
order to block FreeWave a censor needs to block all VoIP
connections with the outside world. This is not desirable by
the censoring ISPs due to different business and political
implications. VoIP constitutes an important part of today’s
Internet communications [36]–[38]; a recent report [37]
shows that about one-third of U.S. businesses use VoIP
solutions to reduce their telecommunications expenses, and
the report predicts the VoIP penetration to reach 79% by
2013, a 50% increase compared to 2009.

We implement a prototype of FreeWave over the popular
VoIP service of Skype and measure its performance. To
achieve reliable communication over VoIP connections we
design a communication encoder/decoder tailored for the
VoIP’s lossy communication channel. Specifically, we take

1The supernodes assigned to a particular Skype client by the Skype
protocol are geographically close to that client for better quality of service;
hence a FreeWave server is expected to use nearby supernodes. In addition,
a FreeWave server can adjust the list of its Skype supernodes [34], [35],
as described later.

advantage of Turbo codes and QAM modulation techniques
[39], [40] in order to reliably encode the circumvented traffic
inside the VoIP connections. Our evaluations show that
FreeWave provides connection bit rates that are suitable for
regular web browsing. We validate FreeWave’s usability by
clients that are geographically far away from the FreeWave
server.

Contributions: In this paper we make the following main
contributions:

• i) We propose, FreeWave, a novel infrastructure for
censorship circumvention that works by modulating
Internet traffic into the acoustic signals carried over
VoIP connections. The use of actual VoIP connections,
as well as being relayed by oblivious VoIP nodes
provides promising unobservability for FreeWave.

• ii) We design communication encoders and decoders
to efficiently modulate Internet traffic into acoustic
signals.

• iii) We prototype FreeWave on the popular VoIP service
of Skype and evaluate its performance and security.

The rest of this paper is organized as follows: In Section II
we review our threat model and the goals in designing
our circumvention system. We describe the design of our
proposed circumvention system, FreeWave, in Section III,
and Section IV discusses our design details. In Section V,
we discuss the features of our designed circumvention
system. We thoroughly analyze the security of FreeWave
in Section VI. In Section VII we describe the design of
MoDem, the communication block of FreeWave software.
We describe our prototype implementation in Section VIII
along with the evaluation results. In Section IX we compare
FreeWave with two recent proposals of SkypeMorph [28]
and CensorSpoofer [31]; this is followed by additional
related work in Section X. In Section XI we discuss Free-
Wave’s limitations and several recommendations. Finally, the
paper is concluded in Section XII.

II. PRELIMINARIES

A. Threat model

We assume that a FreeWave client is connected to the
Internet through a censoring ISP, e.g., an ISP that is
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controlled and regulated by a repressive regime. Based
on the regulations of the censoring ISP its users are not
allowed to connect to certain Internet destinations, called
the censored destinations. The users are also prohibited from
using censorship circumvention technologies that would help
them to evade the censoring regulations. The censoring ISP
uses a set of advanced technologies to enforce its censoring
regulations, including IP address blocking, DNS hijacking,
and deep packet inspection [2], [3]. The censoring ISP also
monitors its users’ network traffic to identify and block
any usage of censorship circumvention tools; traffic analysis
can be used by the censor as a powerful technique for this
purpose.

We assume that the censoring ISP enforces its regula-
tions such that it does not compromise the usability of
the Internet for its users, due to different political and
economical reasons. In other words, the enforced censorship
does not disable/disrupt key Internet services. In particular,
we consider VoIP as a key Internet service in today’s Internet
[36], [38], [41], and we assume that, even though a censor
may block certain VoIP providers, the censor will not block
all VoIP services. VoIP constitutes a key part in the design
of FreeWave.

B. Design goals

We consider the following goals in the design and eval-
uation of FreeWave. Later in Section V, we discuss these
features for the FreeWave circumvention system proposed
in this paper and compare FreeWave with related work.

Unblockability: The main goal of a censorship circumven-
tion system is to help censored users gain access to censored
Internet destinations. As a result, the most trivial property
of a circumvention system is being accessible by censored
users, i.e., it should be unblockable by censors.

Unobservability: Unobservability is to hide users’ utiliza-
tion of a circumvention system from censorship authorities,
which is a challenging feature to achieve due to the recent
advances in censorship technologies [2]. The importance
of unobservability is two-fold; first, an observable circum-
vention can jeopardize the safety of a user who has been
caught by the censor while using the circumvention system.
Second, a weak unobservability commonly results in a weak
unblockability, as it allows censors to more easily identify,
hence block, traffic generated by the circumvention system.

Security: Several security considerations should be made
once analyzing a circumvention system. These considera-
tions include users’ anonymity, confidentiality, and privacy
against various parties including the censors, the circumven-
tion system, and third parties.

Deployment feasibility: An important feature of a circum-
vention system is the amount of resources (e.g., hardware,
network bandwidth, etc.) required for it to be deployed in
real world. A circumvention system is also desired to have

few dependencies on other systems and entities in order to
make it more reliable, secure, and cost-effective.

Quality of service: A key feature in making a circumven-
tion system popular in practice is the quality of service pro-
vided by it in establishing circumvented connections. Two
important factors are connection bandwidth, and browsing
latency.

III. FREEWAVE SCHEME

In this section, we describe the design of FreeWave cen-
sorship circumvention. Figure 1 shows the main architecture
of FreeWave. In order to get connected through FreeWave,
a user installs a FreeWave client on her machine, which
can be obtained from an out-of-band channel, similar to
other circumvention systems. The user sets up the installed
FreeWave client by entering her own VoIP ID and also the
publicly advertised VoIP ID of FreeWave server. Once the
FreeWave client starts up, it makes a VoIP audio/video call
to FreeWave server’s VoIP ID. As discussed in Section IV-B,
the FreeWave server is configured in a way that VoIP
connections initiated by clients are relayed through various
oblivious VoIP peers, e.g., Skype supernodes; this is a key
security feature of FreeWave as it prevents a censor from
blocking FreeWave’s VoIP connections using IP address
blocking. Also, since FreeWave’s VoIP connections are end-
to-end encrypted, a censor will not be able to identify
FreeWave’s VoIP connections by analyzing traffic contents,
e.g., by looking for the VoIP IDs. Using the established VoIP
connection, a FreeWave client circumvents censorship by
modulating its user’s Internet traffic into acoustic signals that
are carried over by such VoIP connections. FreeWave server
demodulates a client’s Internet traffic from the received
acoustic signals, and proxies the demodulated traffic to the
requested Internet destinations.

Next, we introduce the main components used in Free-
Wave and describe how these components are used in the
design of FreeWave’s client and server.

A. Components of FreeWave

In this section, we introduce the main elements used in
the design of FreeWave client and server software. The first
three components are used by both FreeWave client and
FreeWave server, while the fourth element is only used by
FreeWave server.

VoIP client VoIP client is a Voice-over-IP (VoIP) client
software that allows VoIP users to connect to one (or more)
specific VoIP service(s). In Section IV-B, we discuss the
choices of the VoIP service being used by FreeWave.

Virtual sound card (VSC) A virtual sound card is a
software application that uses a physical sound card installed
on a machine to generate one (or more) isolated, virtual
sound card interfaces on that machine. A virtual sound card
interface can be used by any application running on the host
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machine exactly the same way a physical sound card is uti-
lized. Also, the audio captured or played by a virtual sound
card does not interfere with that of other physical/virtual
sound interfaces installed on the same machine. We use
virtual sound cards in the design of FreeWave to isolate
the audio signals generated by FreeWave from the audio
belonging to other applications.

MoDem FreeWave client and server software use a modu-
lator/demodulator (MoDem) application that translates net-
work traffic into acoustic signals and vice versa. This allows
FreeWave to tunnel the network traffic of its clients over
VoIP connections by modulating them into acoustic signals.
We provide a detailed description of our MoDem design in
Section VII.

Proxy FreeWave server uses an ordinary network proxy
application that proxies the network traffic of FreeWave
clients, received over VoIP connections, to their final Internet
destinations. Two popular choices for FreeWave’s proxy
are the HTTP proxy [42] and the SOCKS proxy [43]; a
SOCKS proxy supports proxying of a wide range of IP
protocols, while an HTTP proxy only supports proxying
of HTTP/HTTPS traffic, but it can perform HTTP-layer
optimizations like pre-fetching of web contents. Several
proxy solutions support both protocols.

B. Client design

The FreeWave client software, installed by a FreeWave
user, is consisted of three main components described above:
a VoIP client application, a virtual sound card (VSC), and
the MoDem software. Figure 2 shows the block diagram
of the FreeWave client design. MoDem transforms the data
of the network connections sent by the web browser into
acoustic signals and sends them over to the VSC component.
The FreeWave MoDem also listens on the VSC sound card
to receive specially formatted acoustic signals that carry
modulated Internet traffic; MoDem extracts the modulated
Internet traffic from such acoustic signals and sends them
to the web browser. In a sense, the client web browser
uses the MoDem component as a network proxy, i.e., the
listening port of MoDem is entered in the HTTP/SOCKS
proxy settings of the browser.

The VSC sound card acts as a bridge between MoDem
and the VoIP client component, i.e., it transfers audio signals
between them. More specifically, the VoIP client is set up to
use the VSC sound card as its “speaker” and “microphone”
devices (VoIP applications allow a user to select physi-
cal/virtual sound cards). This allows MoDem and the VoIP
client to exchange audio signals that contain the modulated
network traffic, isolated from the audio generated/recorded
by other applications on the client machine.

For the FreeWave client to connect to a particular Free-
Wave server it only needs to know the VoIP ID belonging
to that FreeWave server, but not the IP address of the
FreeWave server. Every time the user starts up the FreeWave

client application on her machine the VoIP application of
FreeWave client initiates an audio/video VoIP call to the
known VoIP ID of the FreeWave server.

C. Server design

Figure 3 shows the design of FreeWave server, which
consists of four main elements. FreeWave server uses a VoIP
client application to communicate with its clients through
VoIP connections. A FreeWave server chooses one or more
VoIP IDs, which are provided to its clients, e.g., through
public advertisement.

The VOIP client of the FreeWave server uses one (or
more) virtual sound cards (VSC) as its “speaker” and
“microphone” devices. The number of VSCs used by the
server depends on the deployment scenario, as discussed in
Section IV-A. The VSC(s) are also used by the MoDem
component, which transforms network traffic into acoustic
signals and vice versa. More specifically, MoDem extracts
the Internet traffic modulated by FreeWave clients into audio
signals from the incoming VoIP connections and forwards
them to the last element of the FreeWave server, FreeWave
proxy. MoDem also modulates the Internet traffic received
from the proxy component into acoustic signals and sends
them to the VoIP client software through the VSC interface.
The FreeWave proxy is a regular network proxy, e.g., an
HTTP proxy, that is used by the FreeWave server to connect
FreeWave clients to the open Internet. As mentioned above
in Section III-B, the web browser of a FreeWave client
targets its traffic to a network proxy; such proxied traffic
is received and handled by FreeWave server’s proxy server
(through the VoIP connections, as described).

IV. OTHER DESIGN DETAILS

A. Deployment scenarios

The FreeWave system proposed in this paper can be
deployed by “good” entities that run FreeWave servers
to help censored users gain an uncensored access to the
Internet. We consider the following scenarios for a real-
world deployment of FreeWave. In Section VI, we discuss
the security considerations for each of these scenarios.

Personal deployment: A person having an open access
to the Internet can set up a personal FreeWave server on
her personal machine, anonymously helping censored users
evade censorship. Such a person can, then, advertise her
VoIP ID (used with her FreeWave server) publicly (e.g.,
through social networks) and anyone learning this ID would
be able to connect to the Internet by running FreeWave
client software. To save bandwidth, she can configure her
FreeWave server to enforce restrictions on the quality of
service provided to clients.

Central VoIP-center: FreeWave service can be deployed
and maintained by a central authority, e.g., a for-profit
or non-profit organization. The deploying organization can
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build and run FreeWave servers that are a capable of
serving large numbers of FreeWave clients. To do so, the
deployed FreeWave servers should utilize several physi-
cal/virtual sound cards in parallel. Also, by creating VoIP
accounts on several, different VoIP service providers such
central FreeWave system will be able to service FreeWave
clients who use various VoIP services. Such a central de-
ployment of FreeWave can operate for commercial profit,
e.g., by charging clients for the used bandwidth, or can be
established as a non-profit system, e.g., being funded by
NGOs or pro-freedom governments.

Central phone-center: As an alternative approach, Free-
Wave can be deployed using an automated telephone center.
More specifically, instead of VoIP IDs, FreeWave will pub-
licize several phone numbers, which are used by clients to
connect to the FreeWave server. FreeWave users need to use
the exact same FreeWave client software, except that instead
of making VoIP calls to a VoIP IDs they will make VoIP
calls to FreeWave server’s phone numbers. Compared to the
”central VoIP-center” scenario, this has the big advantage
that clients can arbitrarily choose any VoIP service provider
for the client software, while in the ”central service” design
users need to choose from the VoIP systems supported by
FreeWave server (though a powerful FreeWave server can
support many VoIP systems).

Distributed service: FreeWave service can also be de-
ployed in a distributed architecture, similar to that of Tor [8]
anonymity network. More specifically, a FreeWave network
can be built consisting of a number of volunteer computers
that run instances of FreeWave server software on their ma-

chines. A central authority can manage the addition of new
volunteer nodes to the system and also the advertisement (or
distribution) of their VoIP IDs to the clients.

B. The choice of VoIP systems

There are numerous free/paid VoIP service providers that
can be utilized by the FreeWave system, e.g., Skype2,
Vonage3, iCal4, etc. A VoIP service provider usually supplies
its VoIP client software to its users, but there are also some
VoIP software that can be used for different VoIP accounts,
e.g., PhonerLite5. In this section, we mention some candidate
VoIP services that can be used by FreeWave.

1) Skype: Skype is a peer-to-peer VoIP system that pro-
vides voice calls, instant messaging, and video calls to its
clients over the Internet. Skype is one of the most popular
VoIP service providers with over 663 million users as of
September 2011 [44].

Skype uses an undisclosed proprietary design, which
has been partly reverse-engineered in some previous re-
search [34], [35], [45]. These studies find that Skype uses
a peer-to-peer overlay network with the Skype users as its
peers. There are two types of nodes on Skype: ordinary

nodes, and supernodes (SN). Any Skype client with a public
IP address, having sufficient CPU, memory, and network
bandwidth serves as a supernode, and all the other nodes
are ordinary nodes. In addition, Skype uses a central login

2http://www.skype.com
3http://www.vonage.com
4http://www.icall.com/
5http://www.phonerlite.de/index en.htm

http://www.skype.com
http://www.vonage.com
http://www.icall.com/
http://www.phonerlite.de/index_en.htm


server that keeps users’ login credentials and is used by
Skype users to register into Skype’s overlay network. Apart
from the login server all Skype communications work in a
peer-to-peer manner, including the user search queries and
online/offline user information.

A key feature that makes Skype an ideal choice for
FreeWave is its peer-to-peer network. Depending on its
network setting [33], an ordinary Skype user deploys some
supernodes as her proxies to connect to the Skype network,
to make/receive calls, and to update her status. In particular,
a Skype call made toward an ordinary Skype node gets
relayed to her by her supernodes [34], [35]. Each ordinary
node maintains a supernode-cache [35] table that keeps a
list of reachable (usually nearby) supernodes, discovered by
the Skype protocol. We use this feature to provide server
obfuscation for FreeWave: by having our FreeWave server
to act as an ordinary Skype node the VoIP connections that it
receives will be relayed by alternative supernodes, rendering
IP address blocking impossible. We discuss this further in
Section VI. Also note that a censor can not map a FreeWave
server to its supernodes since the supernode-cache table is
a large, dynamic list; further, a Skype client can change
its supernodes more frequently by flushing [34], [35] its
supernode-cache.

Based on the criteria mentioned for a supernode, an easy
way to be treated as an ordinary node by Skype is to
reside in a firewalled, NATed network subnet [33], [35]. As
another interesting feature of Skype for FreeWave, all Skype
connections are secured by end-to-end encryption [34], [35].

2) SIP-based VoIP: Session Initiation Protocol (SIP) [46]
is a light-weight, popular signaling protocol and is widely
used by VoIP providers, e.g., SFLphone6, Zfone7, and
Blink8, to establish calls between clients. A SIP-based VoIP
system consists of three main elements [46]: 1) user agents

that try to establish SIP connections on behalf of users, 2)
a location service that is a database keeping information
about the users, and 3) a number of servers that help users
in establishing SIP connections. In particular, there are two
types of SIP servers; registrar servers receive registration
requests sent by user agents and update the location service
database. The second types of SIP servers are proxy servers
that receive SIP requests from user agents and other SIP
proxies and help in establishing the SIP connections.

Once a SIP connection is established between two user
agents a media delivery protocol is used to transfer media
between the users. Most of the SIP-based VoIP systems use
the Real-time Transport Protocol (RTP) [47] to exchange
audio data, and the Real-Time Transport Control Protocol
(RTCP) [47] protocol to control the established RTP con-
nections. User agents in SIP-based VoIP system are allowed

6http://sflphone.org/
7http://zfoneproject.com/
8http://icanblink.com/

to use an encryption-enabled version of RTP, called Secure
Real-time Transport Protocol (SRTP) [48], in order to secure
their VoIP calls. Note that the encryption supported by SRTP
is performed end-to-end by SIP agents and VoIP servers are
not required to support encryption. We mandate the SIP-
based design of FreeWave to use SRTP for media transfer.

Similar to Skype, if a user agent is behind NAT or a
firewall it will use an intermediate node to establish its
VoIP connections. In particular, two popular techniques used
by VoIP service providers to bypass NAT and firewalls are
session border controller (SBC) [49] and RTP bridge servers
[50]. As in the case of the Skype-based FreeWave, putting
a FreeWave server behind a firewall masks its IP address
from censors, as the VoIP calls to it will be relayed through
oblivious intermediate nodes. However, better care needs to
be taken in this case since, unlike Skype, SIP-based VoIP
systems are not peer-to-peer.

3) Centralized VoIP: Several VoIP providers use their
own servers to relay VoIP connections, in order to improve
connectivity, regardless of the VoIP protocol that they use.
One interesting example is the Google Voice9, which relays
all of its calls through Google servers, hence disguising a
callee’s IP address from a censor. Also note that the calls in
Google Voice are encrypted.

V. EVALUTION OF THE DESIGN GOALS

In Section II-B, we listed several features that we consider
in designing an effective circumvention system. Here, we
discuss the extent to which our proposed system, FreeWave,
achieves such requirements.

Unblockability: In order to use FreeWave, a client only
needs to know the VoIP ID of the FreeWave server, i.e.,
server-id, but no other secret/public information like the
server’s IP address. server-id is distributed in a public
manner to the users, so we assume that it is also known
to censors. Considering the use of encrypted VoIP connec-
tions by FreeWave, this public knowledge of server-id
does not allow censors to identify (and block) the VoIP
connections to the FreeWave server. In addition, a censor
will not be able to identify FreeWave’s VoIP connections
from their IP addresses since, as discussed in Section IV-B,
the encrypted VoIP connections to the FreeWave server are
relayed through oblivious, intermediate nodes (given the
FreeWave server is set up appropriately). For instance, in
Skype-based FreeWave the VoIP connections to the Free-
Wave server are relayed by oblivious Skype supernodes.
Also, FreeWave server is not mapped to a particular set of
supernodes, i.e., its VoIP connections are relayed through a
varying set of super nodes. In all of the above arguments, we
assume that the VoIP service provider used by FreeWave is
not colluding with the censors, otherwise the unobservability
is lost. Such collusion could happen if a centralized VoIP

9https://www.google.com/voice

http://sflphone.org/
http://zfoneproject.com/
http://icanblink.com/
https://www.google.com/voice


service, e.g., Google Voice, informs censors of the clients
calling FreeWave’s Google Voice ID, or if the censors
control the supernodes used by a FreeWave server.

Another point in making FreeWave unblockable is that
it does not depend on a particular VoIP system, and can
select from a wide range of VoIP providers. As a result, in
order to block FreeWave, censors will need to block all VoIP
services, which is very unlikely due to several political and
economical considerations.

Note that unblockability is a serious challenge with many
existing circumvention systems, as the very same infor-
mation that they advertise for their connectivity can be
used by censors to block them. For example, the Tor [8]
system requires its clients to connect to a public set of
IP addresses, which can be IP-filtered by censors. More
recently, Tor has adopted the use of Tor bridges [15],
which are volunteer proxies with semi-public IP addresses.
Unfortunately, there are different challenges [12], [16], [17],
[20], [29] in distributing the IP addresses of Tor bridges only
to real clients, but not to the censors.

Unobservability: The arguments made above for Free-
Wave’s unblockability can also be used to justify its un-
observability. As mentioned above, even though FreeWave
server’s VoIP ID (server-id) is assumed to be known
to censors, the end-to-end encryption of VoIP connections
prevents a censor from observing users making VoIP con-
nections to server-id. In addition, VoIP relays sitting be-
tween FreeWave clients and a FreeWave server, e.g., Skype
supernodes, foil the identification of FreeWave connections
through IP address filtering.

Deployment feasibility: The real-world deployment of
FreeWave does not rely on other entities. This is in con-
trast to some recent designs that need collaboration from
third parties for their operation. For instance, Infranet [5]
requires support from some web destinations that host the
circumvention servers. As another example, several recent
proposals [10], [11], [51] rely on the collaboration from
friendly ISPs for their operation.

Quality of service: In Section VIII, we discus the connec-
tion performance provided by our prototype implementation
of FreeWave. Our results show that FreeWave provides
reliable connections that are good for normal web browsing.

VI. SECURITY ANALYSIS

In this section, we discuss the security of FreeWave clients
to the threats imposed by different entities.

A. Security against censors

The end-to-end encryption of VoIP connections protects
the confidentiality of the data sent by FreeWave clients
against a monitoring censor, even if the censor is able to
identify VoIP connections targeted to FreeWave. Such end-
to-end encryption also ensures the web browsing privacy of
FreeWave clients. As mentioned in Section IV-B, Skype calls

are encrypted end-to-end, and SIP-based VoIPs also provide
end-to-end encryption using the SRTP protocol. In the case
of centralized VoIP services, like the Google Voice, the
encryptions are usually client-to-server, hence the FreeWave
client should ensure that its VoIP provider is not colluding
with the censors.

Even though FreeWave uses encrypted VoIP connections
a censor may still try to identify FreeWave-generated VoIP
connections by performing traffic analysis, i.e., by analyzing
communication patterns. The use of actual VoIP connections
by FreeWave (instead of shaped connections as in [27], [28])
makes traffic analysis particularly hard. We show this in
Section VIII-C by analyzing FreeWave’s VoIP connections
and comparing them with regular VoIP connections. As
discussed in Section VIII-C, the choice of the VoIP system
affects the feasibility of traffic analysis. Please see Sec-
tion VIII-C for more discussion on FreeWave traffic analysis.

B. Security against FreeWave servers

A FreeWave server only knows the VoIP IDs of its client,
but not their IP addresses since the VoIP connections are
being relayed through intermediate VoIP nodes. As a result,
unless the VoIP service (e.g., the Google Voice server,
or a Skype supernode owned by a FreeWave server) is
colluding with the FreeWave server, the FreeWave server
will not be able to link VoIP IDs to IP addresses, i.e.,
the client is anonymous to the server. Note that anonymity
against circumvention systems is not demanded by typi-
cal censored users who are only willing to access non-
sensitive censored information like the news, and in fact
some popular circumventions mechanisms do not provide
such anonymity, e.g., the single-proxy based systems such
as the Anonymizer [9]. A FreeWave client can strengthen
its anonymity against the FreeWave server in different ways.
For instance, she can enforce its VoIP traffic to be relayed
by additional intermediate VoIP relays, e.g., by the client’s
Skype supernodes.

In the basic design of FreeWave mentioned above a
FreeWave server can observe the traffic contents exchanged
by a FreeWave client, since the tunneled traffic is not always
encrypted. However, a client can easily ensure security and
privacy from the server by using an extra layer of encryption.
For instance, a client can use FreeWave to get connected
to an anonymity system like Anonymizer [9], and then
use the tunneled connection with this anonymity system to
browse the Internet. This secures this client’s traffic from the
FreeWave server, as well as makes it confidential. Note that
considering the fact that FreeWave clients are anonymous
to FreeWave servers, clients may opt not to use such an
additional protection for low-sensitive activities like web
browsing.



C. Security against VoIP providers

Except for the centralized VoIP services, the VoIP connec-
tions between FreeWave clients and servers are encrypted
end-to-end using the keys shared through the VoIP protocol.
In the case of a centralized VoIP service, like the Google
Voice, FreeWave parties can exchange a key using a key
sharing mechanism, like the Diffie-Hellman key exchange
[52], over the established FreeWave VoIP. As a result, the
VoIP provider will not be able to observe the data being
communicated, nor the web destinations being browsed.
However, the VoIP service provider might be able to identify
VoIP IDs that have made VoIP calls to a FreeWave server.
As a result, in order to ensure its unobservability FreeWave
needs to use VoIP providers that are not colluding with the
censors. Note that FreeWave does not rely on a particular
VoIP system and any VoIP provider can be used for its
operation.

VII. FREEWAVE MODEM

The MoDem component is one of the main components
of both FreeWave client and FreeWave server application,
which translates Internet traffic into acoustic signals and vice
versa. MoDem consists of a modulator and a demodulator.
MoDem’s modulator modulates data (IP bits) into acoustic
signals, and MoDem’s demodulator extracts the encoded
data from a received acoustic signal. In the following, we
describe the design of MoDem’s modulator and demodula-
tor.

A. Modulator description

We design a bit-interleaved coded modulation

(BICM) [40] for MoDem’s modulator, which is shown
in Figure 4. First, the modulator encodes the information
bits, {ai}, i.e., IP traffic, using a channel encoder with
rate Rc. The encoded stream, {bi}, is permuted using a
random interleaver [40], and the interleaved sequence is,
then, partitioned into subsequences cn = {c1n, . . . , c

Q
n } of

length-Q (n is the partition index and Q is a parameter
of our modulator). Finally, a QAM mapper [40] generates
the modulated data by mapping each subsequence cn to a
2Q-ary quadrature amplitude modulation symbol.

We design a wrapper protocol to carry the modulated data.
This wrapper performs three important tasks: 1) it allows
a demodulator to synchronize itself with the modulator
in order to correctly identify the starting points of the
received data; 2) it lets the sender and receiver negotiate
the modulation parameters; and, 3) it lets the demodulator
adapt itself to the time-varying channel. Figure 4 shows
the modulated data being wrapped by our wrapper protocol.
As can be seen, the modulated bit stream is converted into
data frames that are sent over the VoIP channel. Each data
frame starts with a known preamble block, which is needed
for synchronization as well as for receiver initialization
purposes. The frame preamble is followed by a signal block

that is used to communicate the modulation and coding
parameters used for this particular frame. The signal block
is followed by N blocks of training and data symbols. The
data symbols are the output of the QAM modulator. The
training blocks are needed to adapt the demodulator to the
time-varying channel.

The data frames, as generated above, are sent over the
VoIP channel using acoustic signals. In particular, for xn

being the n-th symbol in a frame, the frame is mapped to a
waveform x(t) : R → C as follows:

x(t) =
∑

l

xlp(t− lT ) (1)

where p(t) is a basic pulse shifted by multiples of the symbol
period T . This signal is then transformed to a passband [39]
signal with the center frequency of fC :

xPB(t) = 2#{x(t)e2πifCt} (2)

which is then sent over the VoIP channel (by getting sent to
the virtual sound card). #{} returns the real component of
a complex number, and i is the imaginary unit.

B. Demodulator description

Figure 5 shows MoDem’s demodulator, which is designed
to effectively extract the data that the modulator embedded
into an audio signal. For an audio waveform, r(t), received
from the virtual sound card the demodulator shifts its
spectrum by the center frequency fC , passes it through
a low-pass filter and then samples the resulting signal at
symbol rate (equal to 1/T ). The synchronizer correlates the
preamble block with the obtained samples, declares the point
of maximum correlation as the starting point of the received
frame, discards all samples before this point, and enumerates
the remaining samples by rn(n = 1, 2, ...). We assume the
voice channel to be linear and can hence write: [39]:

rn =

Kp∑

k=−Kf

hn,kxn−k + wn (3)

where n and k are time and delay indices, respectively.
Also, wn is a complex white Gaussian noise process, which
models the noise added to the modulated data as a result of
the noisy channel (e.g., due to VoIP codec’s lossy compres-
sion). Moreover, hn,k is the channel gain [39], which may
vary in time. The channel length is assumed to be at most
Kf +Kp + 1, where Kf is the length of the precursor and
Kp is the length of the postcursor response.

The demodulator passes the discrete stream of {r}
through a Turbo equalizer [39]. The goal of this equalizer is
to obtain an estimation of {x}, i.e., the discrete modulated
data. The estimated data is passed to a channel decoder,
which is the equivalent decoder for the encoder used by
MoDem’s modulator. We also put an interleaver and a
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Figure 5. Block diagram of MoDem’s demodulator.

de-interleaver block between the Turbo equalizer and the
channel decoder modules; this is to uniformly distribute
burst bit errors, generated in the channel, across the stream
in order to improve the decoding process. This is because
our channel decoder performs well with distributed errors,
but poorly with bursty errors.

VIII. PROTOTYPE AND EVALUATION

In this section, we describe our prototype implementation
and discuss its connection performance.

A. Implementation setup

We have built a prototype implementation of FreeWave
over Skype. Our MoDem component uses Matlab’s libraries
for acoustic signal processing, and we use Virtual Audio
Card 10 as our virtual sound card (VSC) software. We also
use the free version of Skype client software11 provided
by Skype Inc. as our VoIP client component. Our MoDem
software, as well as the Skype client are set up to use
the Virtual Audio Card as their audio interface. We have
built our FreeWave client and FreeWave server using the
components mentioned above. In order to emulate a real-
world experience, i.e., a long distance between a FreeWave
client and a FreeWave server, we connect our FreeWave
client to the Internet though a VPN connection. In particular,
we use the SecurityKISS12 VPN solution that allows us to
pick VPN servers located in different geographical locations

10http://software.muzychenko.net/eng/vac.htm
11http://www.skype.com/intl/en-us/get-skype/
12http://www.securitykiss.com/

around the world. Note that this identifies the location of
our FreeWave clients; our FreeWave server is located in
Champaign, IL, USA.

MoDem specifications: Our evaluations show that the data
rates that can be achieved with our system clearly depend
on the bandwidth of the Internet connection and the distance
between the client and server. The minimum bandwidth
required for a voice call is 6 kbps for both upload and
download speeds, according to Skype. For the pulse function
of MoDem’s modulator, p(t) (Section VII), we use a square-
root raised cosine filter with a roll-off factor 0.2 and a
bandwidth of 1/T . The carrier frequency fC is chosen such
that the spectrum of the voiceband is always covered. At
the demodulator, the same square-root raised cosine filter
is used for low-pass filtering. Our communication system
automatically adjusts the symbol constellation size Q, the
channel coding rate Rc, and the symbol period T such
that the best possible data rate is achieved. The receiver
knows how well the training symbols were received, and
based on this feedback the modulator can optimize the data
rate. The relationship between the data rate R and the above
parameters is R = (QRc)/T . Our designed demodulator is
iterative [39]. The number of iterations needed for conver-
gence depends on the channel condition, which is typically
measured by means of the signal to noise power ratio, the
SNR.

B. Connection performance

Connection data rates: Table I shows the bit rates achieved
by FreeWave clients connecting from different geographic
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Figure 6. BER versus SNR for FreeWave.

locations to our FreeWave server, located in Champaign, IL,
USA. At the beginning of each FreeWave connection, our
client runs an assessment subprotocol to identify the best
codecs and the reliable data rate. The table lists the best
compromise between data rates and packet drop rates, for
different clients. As can be seen, clients in different parts of
Europe are reliably able to get connection bit rates of 16kbps
by using FreeWave over Skype. Users within the US are
able to achieve higher data rates, e.g., 19.2kbps for a client
in Chicago, IL. Note that the distance between a FreeWave
client and the FreeWave server slightly affects the achievable
data rates. To illustrate this, Figure 6 shows the bit error
rate (BER) performance of our designed demodulator for
different SNRs in the log-scale for a 19kbps FreeWave
connection. As can be seen, for SNRs larger than 5.4dB the
BER tends to zero (the zero value cannot be shown in the
log-scale figure). A distributed deployment of FreeWave can
provide users from many different geographic locations with
the same reliable data rate speeds; for instance, FreeWave
servers running in Europe can assist FreeWave users from
the Middle East better than the FreeWave servers that are
located in the US.

Maximum achievable data rates: As illustrated above, our
FreeWave prototype is able to reliably achieve bit rates of
up to 19kbps, using the MoDem component designed in this
paper. It is possible to design more complicated MoDems
that can achieve higher bit rates, however, a MoDem will
not be able to achieve arbitrarily large data rates. This is
due to the fact that each VoIP codec samples speech at
a particular rate (or at a given range of rates) [53] and
FreeWave cannot achieve data rates higher than a codec’s
bit-rate. For instance, Skype generates a bit-rate between
6 and 40kbps [53] (depending on the distance between
the end-hosts, Internet bandwidth and few other factors),
resulting in a “maximum” achievable rate of 40kbps for

FreeWave (the actual rate achieved depends on the efficiency
of MoDem). The “L16” codec generates a 128kbps data rate,
resulting in a maximum FreeWave bit-rate of up to 128kbps.
As another instance, the widely used codec of “G.711”
produces a 64kbps data rate [53], leading to a maximum
FreeWave bit rate of 64kbps.

We believe that the bit rates achievable by the current
design of FreeWave are enough for normal web browsing,
especially for a user under a repressive regime who aims
to do normal web browsing. On the other hand, a trivial
approach to achieve much higher rates is to encode Internet
traffic into the video signals carried over VoIP connections.
This requires designing efficient modulator/demodulators for
encoding data into video, which we leave for future research.

C. Traffic analysis

In order to resist traffic analysis, FreeWave VoIP con-
nections should have communication patterns similar to
that of regular VoIP connections. Note that FreeWave uses
encrypted VoIP connections, so a censor will not be able to
analyze packet contents (popular VoIP providers like Skype
provide/mandate encrypted VoIP connections). The two traf-
fic patterns that may be used for traffic analysis in this case
are packet rates and packet sizes. Most of the standard VoIP
codecs, like the widely used G.7 series [53], use fixed bit
rates and fixed packet sizes during a given connections, or
even across all connections [53]. This prevents any kind of
traffic analysis against FreeWave connections that use these
codecs. In fact, these codecs are widely used by different
VoIP providers, e.g., the Google Voice service [54]. On
the other hand, several VoIP codecs use variable bit-rates,
most notably Skype’s proprietary SILK [55] codec. When
FreeWave uses a VoIP service that uses variable-bit-rate
codecs, special care needs to be taken to prevent traffic
analysis. We have analyzed the FreeWave traffic sent over
Skype in our prototype implementation, and have compared
its traffic patterns with regular Skype traffic. We observe that
there are two states in a regular Skype call: “Skype-Speak”,
in which the callee is speaking over Skype, and “Skype-
Silence”, in which the callee is silent (e.g., she is listening
to the person on the other side of the line).

Table II shows the average communication statistics for
the three different types of Skype traffic, i.e, Skype in the
Skype-Speak state, Skype in the Skype-Silent, and Skype
tunneling FreeWave. All the analysis is done for the same
pair of Skype peers. As can be seen from the table, FreeWave
over Skype generates communication patterns very similar
to regular Skype in the Skype-Speak state, while the Skype-
Silent state generate lower packet rates and smaller packet
sizes. This is because Skype’s SILK [55] codec reduces its
packet rate and uses smaller packets when the audio signal
captured by Skype client is weak, in order to conserve band-
width. We observe that, based on this analysis, a FreeWave
over Skype call makes communication patterns very similar
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Client location
MoDem parameters

Data rate
Packet

Q 1/T RC drop rate
Berlin, Germany 4 8 kHz 0.5 16000 bps 0

Frankfurt, Germany 4 8 kHz 0.5 16000 bps 0
Paris, France 4 8 kHz 0.5 16000 bps 0

Maidenhead, UK 4 8 kHz 0.5 16000 bps 0
Manchester, UK 4 8 kHz 0.5 16000 bps 0

Lodz, Poland 4 8 kHz 0.5 16000 bps 0.06
Chicago, IL 4 9.6 kHz 0.5 19200 bps 0.01

San Diego, CA 4 9.6 kHz 0.469 18000 bps 0

Table I
EVALUATION RESULTS OF FREEWAVE.

to a typical Skype call: In a typical Skype call, when one
side of the connection is in the Skype-Speak state the other
side is usually in the Skype-Silent state (i.e., listening to
the other side). In a FreeWave over Skype call, also, when
one side of the connection is sending data the other side is
usually idle, e.g., a web traffic is a serious of HTTP GET
and HTTP RESPONSE messages that appear in a sequence.
Furthermore, simple modifications can be made to FreeWave
client and server software in order to better hide its traffic
pattern; for instance, one side can stop sending data if the
other side is sending data, or a dummy audio can be sent
if both sides have been silent for a long time. Once again,
note that this is only required if FreeWave is deployed on a
VoIP system that uses a variable-length audio codec.

IX. COMPARISON WITH SIMILAR SYSTEMS

Recently, there have been two proposals for censorship
circumvention that, similar to FreeWave, use the openness
of VoIP to evade censorship. Due to their similarity with
FreeWave we describe the advantages of FreeWave over
them in this section.

A. SkypeMorph

SkypeMorph [28] is a pluggable transport [24] for Tor.
SkypeMorph is designed to obfuscate the connections be-
tween Tor [8] users and Tor bridges [15] so that they look
like legitimate Skype traffic. The main goal of SkypeMorph
is to make it hard for a censor to distinguish between
obfuscated Tor bridge connections and actual Skype calls
using deep-packet inspection and statistical traffic analysis.
A big implementation-wise difference with our proposal
is that SkypeMorph does not completely run, but mimics,
Skype, whereas FreeWave runs the target VoIP protocol in
its entirety. FreeWave has the following main advantages
over SkypeMorph:

Server obfuscation: Similar to the most of existing
obfuscation-based techniques, SkypeMorph only provides
traffic obfuscation, but it does not provide server obfus-
cation. A censor may not be able to identify SkypeMorph
traffic through statistical analysis, since SkypeMorph shapes
it to look like a regular Skype traffic. However, if a censor
discovers the IP address of a SkypeMorph Tor bridge, e.g.,

through bridge enumeration [16], [17], SkypeMorph’s ob-
fuscations does not provide any protection since the censor
can easily block its traffic by IP addresses matching. As
an indication to the severity of this problem, the Chinese
censors were able to enumerate all bridges in under a month
[30]. Once a Tor bridge is known to a censor, SkypeMorph
is not able to provide any protection.

On the other hand, FreeWave provides server obfuscation
in addition to traffic obfuscation. Instead of morphing the
traffic into VoIP, FreeWave uses the overlay network of
VoIP systems to route the connections among users and
servers. As a result, FreeWave’s VoIP traffic gets relayed
by “oblivious” VoIP nodes, hiding the identity (e.g., the
IP address) of the FreeWave server. Even a censor who
knows the IP address of a FreeWave server will not be
able to identify and/or block client connections to that
server, since these connections do not go directly to the
server. For instance, if Skype is used by FreeWave the
FreeWave connections get relayed by Skype supernodes,
which are oblivious Skype users residing “outside” the cen-
soring ISP (please see Section IV-B for further discussion).
Note that there is not a one-to-one correspondence between
supernodes and FreeWave servers, i.e., various supernodes
relay traffic to a particular FreeWave server for different
connections. As another example, if Google Voice is used
by FreeWave, all the FreeWave connections get relayed by
Google servers, hiding FreeWave servers’ IP addresses. Note
that we assume that VoIP connections are also encrypted.

Comprehensive traffic obfuscation SkypeMorph shapes
Tor traffic into Skype calls, but it does not run the actual
Skype protocol (except for the Skype login process) [28].
This can enable sophisticated attacks that can discriminate
SkypeMorph from Skype by finding protocol details that
are not properly imitated by SkypeMorph. For instance,
SkypeMorph fails to mimic Skype’s TCP handshake [56],
which is essential to every genuine Skype call. Also, Skype
protocol may evolve over time and SkypeMorph would need
to follow the evolution. FreeWave, on the other hand, runs
the actual VoIP protocol in its entirety, providing a more
comprehensive traffic obfuscation.

No need to pre-share secret information: SkypeMorph



Pattern
FreeWave

Skype-Speak Skype-Silent
over Skype

Average packet rate (pps) 49.91 50.31 49.57
Average packet size 148.64 146.50 103.97

Minimum packet size 64 64 64
Maximum packet size 175 171 133

Table II
COMPARING COMMUNICATION PATTERNS OF REGULAR SKYPE WITH FREEWAVE-OVER-SKYPE.

needs to secretly share its Skype ID with its clients, as
well as its IP address and port number (this can be done
using Tor’s BridgeDB [57] as suggested by the authors).
Once this secret information is disclosed to a censor (e.g.,
through bridge enumeration) the identified Tor bridge will
need to change both its IP address and its Skype ID, as
suggested in [28], to reclaim its accessibility by clients.
FreeWave, however, does not need to share any information
with its clients: even the VoIP IDs of the FreeWave servers
are publicly advertised without compromising the provided
unobservability.

Obfuscation diversity: SkypeMorph is designed to morph
traffic only into Skype. As a result, if a censor decides to
block Skype entirely SkypeMorph will be blocked as well.
FreeWave, on the other hand, is a general infrastructure and
can be realized using a wide selection of VoIP services.
Needless to say, SkypeMorph may also be modified to mimic
other popular VoIP services, but it requires substantial effort
in understanding and analyzing the candidate VoIP system.
FreeWave, however, can be used with any VoIP service
without the need for substantial modifications.

B. CensorSpoofer

A key goal in the design of CensorSpoofer [31] is to
provide unobservability, as is the case in FreeWave. Cen-
sorSpoofer decouples upstream and downstream flows of a
connection; the upstream flow, which is supposed to be low-
volume, is steganographically hidden inside instant messages
(IM) or email messages that are sent towards the secret IM or
email addresses of the CensorSpoofer server. The IM IDs or
the email addresses of the CensorSpoofer server need to be
shared securely with clients through out-of-band channels.
The CensorSpoofer server sends the downstream flow of a
connection by spoofing a randomly chosen IP address, in
order to obfuscate its own IP address. This spoofed flow
is morphed into an encrypted VoIP protocol to obfuscate
traffic patterns as well. A CensorSpoofer client also needs
to generate “dummy” packets towards the spoofed IP address
to make the connection look bidirectional. FreeWave makes
the following contributions over CensorSpoofer:

No invitation-based bootstrapping: A new CensorSpoofer
client needs to know a trusted CensorSpoofer client in
order to bootstrap [31]. The trusted client helps the new
client to send her personalized upstream ID and SIP ID

to the CensorSpoofer server. Finding an existing, trusted
CensorSpoofer client might be challenging for many new
clients unless CensorSpoofer is widely deployed. Also note
that even an existing CensorSpoofer client needs to re-
bootstrap its CensorSpoofer connectivity if her personalized
CensorSpoofer IDs are discovered by the censors. FreeWave,
on the other hand, does not require an invitation-based
bootstrapping.

Comprehensive traffic obfuscation Unlike FreeWave and
similar to SkypeMorph, CensorSpoofer does not entirely
run the VoIP protocol. This can enable sophisticated attacks
that are able to find protocol discrepancies between Cen-
sorSpoofer and genuine VoIP traffic. Also, the use of IP
spoofing by CensorSpoofer may enable active traffic analysis
attacks that manipulate its downstream VoIP connection and
watch the server’s reaction.

Bidirectional circumvention: In CensorSpoofer VoIP con-
nections only carry the downstream part of a circumvented
connection. The upstream data are sent through low-capacity

steganographic channels inside email or instant messages
[31]. FreeWave, however, provides a high-capacity channel
for both directions of a circumvented connection.

X. OTHER RELATED WORK

Censorship circumvention systems have been evolving
continuously to keep up with the advances in censorship
technologies. Early circumventions systems simply used
network proxies [58] residing outside censorship territories,
trying to evade the simple IP address blocking and DNS
hijacking techniques enforced by pioneer censorship sys-
tems. Examples of such proxy-based circumvention tools
are DynaWeb [6], Anonymizer [9], and Freenet [59].

Proxy-based circumvention tools lost their effectiveness
with the advent of more sophisticated censorship technolo-
gies such as deep-packet inspection [2], [3]. Deep-packet
inspection analyzes packet contents and statistics looking
for deviations from the censor’s regulations. This has led
the circumvention tools to correspondingly sophisticate their
techniques to remain accessible to their users. Many cir-
cumvention designs seek availability by sharing some secret

information with their users so that their utilization is unob-
servable to the censors agnostic to this secret information.
In Infranet [5], for instance, a user needs to make a special,
secret sequence of HTTP requests to an Infranet server to



request for censored web contents, which are then sent to
him using image steganography. Collage [7] similarly bases
its unobservability on sharing secrets with its clients. A
Collage client and the Collage server secretly agree on some
user-generated content sharing websites, e.g., flickr.com, and
use image steganography to communicate through these
websites. The main challenge for these systems, which rely
on pre-sharing secret information, is to be able to share
secret information with a large set of actual users while
keeping them secrets from censors; this is a big challenge to
solve as indicated in several researches [18]–[20]. Sharing
secret information with users has also been adopted by the
popular Tor [8] anonymity network. The secret information
here are the IP addresses of volunteer Tor relays, known as
Tor bridges [15], that proxy the connections of Tor clients
to the Tor network. This suffers from the same limitation
as censors can pretend to be real Tor users and gradually
identify a large fraction of Tor bridges [16], [17], [29].

More recently, several researches propose to build circum-
vention into the Internet infrastructure [10], [11], [51]. Being
built into the Internet infrastructure makes such circumven-
tion highly unobservable: a client’s covert communication
with a censored destination appears to the censor to be a be-
nign connection to a non-prohibited destination. Telex [10],
Cirripede [11] and Decoy Routing [51] are example designs
using such infrastructure-embedded approach. Decoy Rout-
ing needs to share secrets with its clients using out-of-band
channels, whereas Telex and Cirripede share the secret in-
formation needed to initialize their connections using covert
channels inside Internet traffic. Cirripede uses an additional
client registration stage performed steganographically, dis-
tinguishing it from the other designs. Even though these
systems are a large step forward in providing unobservable
censorship circumvention their practical deployment is not
trivial as they need to be deployed by a number of real-world
ISPs that will make software/hardware modifications to their
network infrastructures, posing a substantial deployment
challenge.

Another research trend uses traffic obfuscation to make
circumvented traffic unobservable. Appelbaum et al. propose
a platform that allows one to build protocol-level obfuscation
plugins for Tor, called pluggable transports [24]. These
plugins obfuscate a Tor client’s traffic to Tor bridges by
trying to remove any statistical/content pattern that iden-
tifies Tor’s traffic. Obfsproxy [25], the pioneer pluggable
transport, removes all content identifiers by passing a Tor
client’s traffic through an additional layer of stream ci-
pher encryption. Obfsproxy, however, does not disguise the
statistical patterns of Tor’s traffic. SkypeMorph [28] and
StegoTorus [27] attempt to remove Tor’s statistical patterns
as well by morphing it into popular, uncensored Internet
protocols such as Skype and HTTP. Flashproxy [60] is
another recently designed pluggable transport that chops
a Tor client’s traffic into multiple connections, which are

proxied by web browsers rendering volunteer websites.

CensorSpoofer [31] is another recent proposal that, similar
to SkypeMorph [28], shapes Tor traffic into VoIP protocols.
CensorSpoofer is unique in separating the upstream and
downstream flows of a circumvented connection, and in
using IP spoofing to obfuscate its server’s identity. A security
concern with morphing approaches [27], [28], [31], [61]
is that they do not provide a provable indistinguishability;
censors may be able to devise advanced statistical classifiers
and/or protocol identifiers to find discrepancies between a
morphed traffic and genuine connections. Another approach
that similarly uses VoIP traffic is TranSteg [62]; it re-encodes
a VoIP call packets using a different, lower-rate codec in
order to free a portion of VoIP packet payloads, which are
then used to send a low-bandwidth hidden traffic.

XI. LIMITATIONS AND RECOMMENDATIONS

Server location: In order to achieve server obfuscation
special care needs to be taken in setting up a FreeWave
server. In the case of Skype, for instance, the FreeWave
server should be completely firewalled such that its Skype
traffic is completely handled by Skype supernodes. Also,
a FreeWave server should use a large, dynamic set of su-
pernodes (i.e., by flushing its supernode cache [34], [35]) so
that one cannot map a FreeWave server to its supernodes. A
corrupt supernode (e.g., controlled by the censors) used by a
FreeWave server can identify the clients that used FreeWave
through that supernode. The mechanisms to protect server
obfuscation vary depending on the utilized VoIP system.

Traffic analysis: If the VoIP service deployed by Free-
Wave uses a variable-length audio codec, like SILK [55],
FreeWave’s traffic might be subject to traffic analysis. In
Section VIII-C, we showed that the current deployment of
FreeWave over Skype performs well against simple traffic
analysis, yet more sophisticated traffic analysis [63] may
be able to distinguish FreeWave’s current prototype from
Skype. A trivial countermeasure is to add some pre-recorded
human speech to FreeWave’s audio, which would further
reduce FreeWave’s data rate. A better approach is to encode
FreeWave’s traffic into video, instead of audio, which is
more robust to traffic analysis and provides much higher
throughputs.

Trusting the VoIP provider: A VoIP provider colluding
with censors can significantly degrade FreeWave’s obfusca-
tion promises if FreeWave deploys it. On the bright side,
FreeWave can choose from a wide range of VoIP providers.
In the case of Skype, in particular, Chinese Skype users get
provided with a special implementation of Skype, TOM-
Skype, which is suspected [64] to have built-in surveillance
functionalities such as text message filtering [65]–[68].

Denial of service: Since FreeWave’s VoIP IDs are
public censors can exhaust FreeWave servers by making
many FreeWave connections. Different approaches can be
taken to limit the effect of such attempts such as the existing



sybil defense mechanisms [69], as well as usage limitation
enforcement per VoIP caller.

XII. CONCLUSIONS

In this paper, we presented FreeWave, a censorship cir-
cumvention system that is highly unblockable by censors.
FreeWave works by modulating a client’s Internet traffic
inside the acoustic signals that are carried over VoIP con-
nections. Being modulated into acoustic signals, as well as
the use of encryption makes FreeWave’s VoIP connections
unobservable by a censor. By building a prototype imple-
mentation of FreeWave we show that FreeWave can be used
to achieve connection bit rates that are suitable for normal
web browsing.
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