
Dissent: Accountable Anonymous Group Messaging
Erratum 2

Andrew Wiedemann, Doug von Kohorn, Henry Corrigan-Gibbs, Bryan Ford

Introduction
Dissent [2] is a protocol for sender-anonymous group-wise broadcast, which builds on an anonymous
data collection protocol by Brickell and Shmatikov [1]. Since publication of Dissent, we previously
discovered an attack on the underlying Brickell-Shmatikov protocol utilized by Dissent described in an
erratum [3]. However, there is an additional attack, the “file descriptor replay,” which directly targets
Dissent and not its underlying protocols. The file descriptor replay attack is easier to perpetrate than the
attack on Brickell-Shmatikov and the attacker remains anonymous. The attack may be prevented by
requiring group members to generate fresh primary encryption/decryption keypairs before every
protocol round. Protecting Dissent from the file descriptor replay also provides protection from the
previously described attack. For other applications utilizing the Brickell-Shmatikov protocol, consult
the first erratum [3] for related security information.

File Descriptor Replay
This is an attack against Dissent's [2] file descriptors.

After at least one protocol round has been successfully completed, an adversary can misbehave
in subsequent protocol rounds so as to break the anonymity of the messages sent in the first
(successfully completed) round. The adversary can be located anywhere in the ordering of the
participants. Mounting the attack requires that: (1) all participants reuse their primary (long-term)
encryption keypairs over many protocol rounds, and (2) the attackers participate in at least two such
protocol rounds with the same participants.

Attack Summary
For every round of Dissent, all participating members must generate a file descriptor containing an
encrypted seed and unencrypted hash value for every member in the clique. Each member i chooses a
random seed sij for each member j, and for each j ≠ i, generates Li pseudo-random bits from sij to obtain
ciphertext Cij:

Cij = PRNG{Li, sij} (j ≠ i)

Member i now XORs her message mi with each Cij for j ≠ i to obtain ciphertext Cii:

Cii = Ci1 ⊕ … ⊕ Ci(i-1) ⊕ mi ⊕ Ci(i+1) ⊕ … ⊕ CiN (j = i)

Member i then computes hashes Hij = HASH{Cij}, encrypts each seed sij with j's public key to form
Sij = {sij}yj, and collects the Hij and Sij for each j into vectors. It is important to note that the file
descriptor which member i created has exactly one mismatched seed-hash pair; namely the seed-hash
values for i.

Cii ≠ PRNG{Li, sii}

Therefore, if an attacker replays a file descriptor from a previous honest round the creator of the file

descriptor will not be able to generate Cii. Because member i will not be able to broadcast a valid Cii

such that HASH{Cii} = Hii, the member i who initially generated the initial file descriptor will be
revealed.

Implications for Dissent
This attack is particularly dangerous for the Dissent protocol because the misbehaving node does not
require any escalated privileges (such as ring location) and remains anonymous during the attack. The
attacker can perpetrate this from any ring location because the act only requires that he submits a
particular file descriptor. The attacker is able to remain anonymous because of the anonymity provided
by the Brickell-Shmatikov protocol.

Prevention
Group members can prevent this attack by generating new primary encryption keypairs for every round
of the protocol. By using unique keypairs for every round, no member will be able to decrypt their
designated seed to produce a valid ciphertext for file descriptors replayed from previous rounds. This
will also prevent the category of replay attacks described in the initial erratum.

References
[1] Justin Brickell and Vitaly Shmatikov. Efficient anonymity-preserving data collection. In 12th KDD,
August 2006.

[2] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group messaging. In CCS,
pages 340 350, October 2010.

[3] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Erratum.

