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Abstract

Recent interest in deterministic parallelism has

yielded new deterministic programming languages,

which offer promising features but require rewriting ex-

isting code, and deterministic schedulers, which emu-

late existing thread APIs but do not eliminate races from

the basic programming model. Workspace consistency

(WC) is a new synchronization and memory consistency

model that offers a “naturally deterministic,” race-free

programming model that can be adopted in both new

or existing languages. WC’s basic semantics are in-

spired by—and intended to be as easily understood as—

the “parallel assignment” construct in sequential lan-

guages such as Perl and JavaScript, where concurrent

threads always read their inputs before writing shared

outputs. Prototype implementations of a restricted form

of WC already exist, supporting only strictly hierarchi-

cal fork/join-style synchronization, but this paper devel-

ops and explores the model in more detail and extends

it to support non-hierarchical synchronization patterns

such as producer/consumer pipelines and futures.

1 Introduction

For decades, the “gold standard” in multiprocessor

programming models has been sequentially consistent

shared memory [29] with mutual exclusion [24]. Alter-

native models, such as explicit message passing [34] or

weaker consistency [21], usually represent compromises

to improve performance without giving up “too much”

of the simplicity and convenience of sequentially con-

sistent shared memory. But are sequential consistency

and mutual exclusion really either simple or convenient?

In this model, we find that slight concurrency errors

yield subtle heisenbugs [31, 33] and security vulnerabil-

ities [41]. Data race detection [20, 35] or transactional

memory [23, 39] can help ensure mutual exclusion, but

even “race-free” programs may have heisenbugs [3].

Deterministic schedulers [6–8, 16] make heisenbugs re-

producible once they manifest, but do not eliminate

races or heisenbugs from the programming model: a

slight change of input data affecting instruction path

lengths can still reveal a race [14].

Heisenbugs fundamentally result from nondetermin-

ism in the parallel programming model. This realiza-

tion has inspired new languages that ensure determin-

Figure 1: Workspace versus sequential consistency

ism through communication constraints [40] or type sys-

tems [9]. But to parallelize existing sequential code

for new multicore systems, we would like a program-

ming model that is simple, convenient, deterministic,

and compatible with existing languages.

To this end, we propose a new memory model

called workspace consistency or WC. In WC, concurrent

threads logically share an address space but never see

each others’ writes, except when they synchronize ex-

plicitly and deterministically. To illustrate WC, consider

the “parallel assignment” operator in many sequential

languages such as Python, Perl, Ruby, and JavaScript,

with which one may swap two variables as follows:

x,y := y,x

This construct implies no actual parallel execution:

the statement merely evaluates all right-side expressions

(in some order) before writing their results to the left-

side variables. Now consider a “truly parallel” analog,

using Hoare’s notation for fork/join parallelism [24]:

{x := y} // {y := x}

This statement forks two threads, each of which reads

one variable and then writes the other; the threads then

synchronize and rejoin. As Figure 1 illustrates, under

sequential consistency, this parallel statement may swap

the variables or overwrite one with the other, depend-

ing on timing. Making each thread’s actions atomic, by

enclosing the assignments in critical sections or trans-

actions, eliminates the swapping case but leaves a non-

deterministic choice between x overwriting y and y



overwriting x. How popular would the former “paral-

lel assignment” construct be if it behaved in this way?

Workspace consistency, in contrast, defines the behavior

corresponding to parallel assignment to be the one and

only “correct” behavior: each thread always reads all in-

puts before writing any shared results.

Like release consistency [21], WC distinguishes or-

dinary reads and writes from synchronization operations

and classifies the latter into acquires and releases, which

determine at what point one thread sees (acquires) re-

sults produced (released) by another thread. WC en-

sures determinism by requiring that (1) program logic

uniquely pairs each acquire with a matching release,

(2) only an intervening acquire/release pair makes one

thread’s writes visible to another thread, and (3) acquires

handle conflicting writes deterministically. Unlike most

memory models, reads never conflict with writes in WC:

the swapping example above contains no data race. A

natural way to understand WC—and one way to imple-

ment it—is as a distributed shared memory [2, 28] in

which a release explicitly “transmits” a message con-

taining memory updates, and the matching acquire op-

eration “receives” and integrates these updates locally.

Determinator [4] already implements and demon-

strates the viability of a restricted form of WC, sup-

porting only hierarchical synchronization patterns such

as fork/join and barrier. This paper explores approaches

to generalizing WC to support non-hierarchical synchro-

nization patterns such as dynamic producer/consumer

graphs and inter-thread queues. This approach combines

memory update techniques derived from lazy release-

consistent distributed shared memory [28] with an un-

derlying synchronization discipline corresponding to

message-based Kahn process networks [27].

Section 2 defines WC at a low level, and Section 3 ex-

plores its use in high-level environments like OpenMP.

Section 4 outlines implementation issues, Section 5 dis-

cusses related work, and Section 6 concludes.

2 Workspace Consistency

Since others have eloquently made the case for deter-

ministic parallelism [9, 31], we will take its desirability

for granted and focus on workspace consistency (WC).

This section defines the basic WC model and its low-

level synchronization primitives, leaving the model’s

mapping to high-level abstractions to the next section.

2.1 Defining Workspace Consistency

As in release consistency (RC) [21, 28], WC sepa-

rates normal data accesses from synchronization op-

erations and classifies the latter into release, where a

thread makes recent state changes available for use by

other threads, and acquire, where a thread obtains state

changes made by other threads. A thread performs a re-

Figure 2: Example synchronization trace for three

threads with labeled and matched release/acquire pairs

lease when forking a child thread or leaving a barrier,

for example, and an acquire when joining with a child or

entering a barrier. As in RC, synchronization operations

in WC are sequentially consistent relative to each other,

and these synchronization operations determine when a

normal write in one thread must become visible to a nor-

mal read in another thread: namely, when an intervening

chain of acquire/release pairs connects the two accesses

in a “happens-before” synchronization relation.

While RC relaxes the constraints of sequential con-

sistency [29], allowing an even wider range of nondeter-

ministic orderings, WC in turn tightens RC’s constraints

to permit only one unique execution behavior for a given

parallel program. WC ensures determinism by adding

three new constraints to those of RC:

1. Program logic must uniquely pair release and ac-

quire operations, so that each release “transmits”

updates to a specific acquire in another thread.

2. One thread’s writes never become visible to another

thread’s reads until mandated by synchronization:

i.e., writes propagate “as slowly as possible.”

3. If two threads perform conflicting writes to the

same location, the implementation handles the con-

flict deterministically at the relevant acquire.

Constraint 1 makes synchronization deterministic by

ensuring that a release in one thread always interacts

with the same acquire in some other thread, at the same

point in each thread’s execution, regardless of execu-

tion speeds. A program might in theory satisfy this

constraint by specifying each synchronization opera-

tion’s “partner” explicitly through a labeling scheme. If

each thread has a unique identifier T , and we assign

each of T ’s synchronization actions a consecutive inte-

ger N , then a (T,N) pair uniquely names any synchro-



nization event in a program’s execution. The program

then invokes synchronization primitives of the form

acquire(Tr, Nr) and release(Ta, Na), where

(Tr, Nr) names the acquire’s partner release and

vice versa. Figure 2 illustrates a 3-thread execution trace

with matched and labeled acquire/release pairs. We sug-

gest this scheme only to clarify WC: explicit labeling

would be an unwelcome practical burden, and Section 3

discusses more convenient high-level abstractions.

Constraint 2 makes normal accesses deterministic by

ensuring that writes in a given thread become visible to

reads in another thread at only one possible moment. RC

already requires a write by thread T1 to become visible

to thread T2 no later than the moment T2 performs an

acquire directly or indirectly following T1’s next release

after the write. RC permits the write to become visi-

ble to T2 before this point, but WC requires the write to

propagate to T2 at exactly this point. By delaying writes

“as long as possible,” WC ensures that non-conflicting

normal accesses behave deterministically while preserv-

ing the key property that makes RC efficient: it keeps

parallel execution as independent as possible subject to

synchronization constraints.

WC’s third constraint affects only programs with data

races. If both threads in Figure 1 wrote to the same vari-

able before rejoining, for example, WC requires the join

to handle this race deterministically. Since data races

usually indicate software bugs, one response is to throw

a runtime exception. Other behaviors, e.g., prioritizing

one write over the other, would not affect correct pro-

grams but may be less helpful with buggy code.

2.2 Why WC is Deterministic

To clarify why the above rules adequately ensure deter-

ministic execution in spite of arbitrary parallelism, we

briefly sketch a proof of WC’s determinism.

Theorem: A parallel program whose sequential frag-

ments execute deterministically, and whose memory ac-

cess and synchronization behavior conforms to the rules

in Section 2.1, yields at most one possible result.

Proof Sketch: Assume each synchronization opera-

tion explicitly names its “partner” as described above.

Suppose we implement WC by accumulating memory

“diffs” and passing them at synchronization points atop

a message-passing substrate, as in distributed shared

memory [2, 28]. Assume the substrate provides an un-

limited number of buffered message channels, each with

a unique name of the form (Tr, Nr, Ta, Na). When a

thread Tr invokes a release(Ta, Na) operation la-

beled (Tr, Nr), Tr sends all diffs it has accumulated

so far on channel (Tr, Nr, Ta, Na). Similarly, when

thread Ta invokes an acquire(Tr, Nr) operation la-

beled (Ta, Na), it receives a set of diffs on channel

(Tr, Nr, Ta, Na) and applies those it does not already

have. Since each channel (Tr, Nr, Ta, Na) is used by

only one sender Tr and one receiver Ta, the resulting

system forms a Kahn process network [27], and WC’s

determinism follows from that of Kahn networks.

3 High-level Synchronization

While a parallel application could in theory be writ-

ten using raw, explicit WC acquire/release constructs in

the form discussed above, we would never expect or-

dinary software developers to do so. Instead, practical

use requires higher-level, more developer-friendly syn-

chronization abstractions that support common parallel

programming idioms while preserving the determinism

of the underlying WC model.

As one approach to providing such high-level ab-

stractions, we are developing DOMP, a variant of

OpenMP [36] based on the WC model. DOMP re-

tains OpenMP’s language neutrality and convenience,

supporting most OpenMP constructs except for funda-

mentally nondeterministic ones, and extending OpenMP

to support general reductions and non-hierarchical de-

pendency structures. While we describe DOMP in more

detail elsewhere [1], here we summarize key synchro-

nization abstractions and describe how they map to the

acquire/release “primitives” underlying the WC model.

Fork/Join: OpenMP’s foundation is its parallel

construct, which forks multiple threads to execute a par-

allel code block and then rejoins them. Fork/join paral-

lelism maps readily to WC, as shown in Figure 3(a): on

fork, the parent releases to an acquire at the birth of each

child; on join, the parent acquires the final results each

child releases at its death. OpenMP’s work-sharing con-

structs, such as parallel for loops, merely affect each

child thread’s actions within this fork/join model.

Barrier: At a barrier, each thread releases to each

other thread, then acquires from each other thread, as

in Figure 3(b). Although we view an n-thread barrier

as n− 1 releases and acquires per thread, DOMP avoids

this n2 cost using “broadcast” release/acquire primitives,

which are consistent with WC as long as each release

matches a well-defined set of acquires and vice versa.

Ordering: OpenMP’s ordered construct orders a

particular code block within a loop by iteration while

permitting parallelism in other parts. DOMP imple-

ments this construct using a chain of acquire/release

pairs among worker threads, as shown in Figure 3(c).

Reductions: OpenMP’s reduction attributes and

atomic constructs enable programs to accumulate

sums, maxima, or bit masks efficiently across threads.

OpenMP unfortunately supports reductions only on

simple scalar types, leading programmers to serial-

ize complex reductions unnecessarily via ordered or



Figure 3: Mapping of High-level Synchronization Operations to Acquire/Release Pairs

critical sections or locks. All uses of these serializa-

tion constructs in the NAS Parallel Benchmarks [25] im-

plement reductions, for example. DOMP therefore pro-

vides a generalized reduction construct, by which a

program can specify a custom reduction on pairs of vari-

ables of any matching types, as in this example:

#pragma omp reduction(a:a1,b:b1,c:c1)

{ a += a1; b = max(b,b1);

if (c1.score > c.score) c = c1; }

DOMP accumulates each thread’s partial results in

thread-private variables and reduces them at the next join

or barriar via combining trees, improving both conve-

nience and scalability over serialized reduction.

Tasks: OpenMP 3.0’s task constructs express a form

of fork/join parallelism suited to dynamic work struc-

tures. Since WC rules prevent a task from seeing any

writes of other tasks until it completes and synchronizes

at a barrier or taskwait, DOMP eliminates OpenMP’s

risk of subtle bugs if one task uses shared inputs that are

freed or go out of scope in a concurrent task.

DOMP extends OpenMP with explicit task objects,

with which a taskwait construct can name and syn-

chronize with a particular task instance independently

of other tasks, in order to express futures [22] or non-

hierarchical dependency graphs [19] deterministically:

omp_task mytask;

#pragma omp task(mytask)

{ ...task code... }

...other tasks...

#pragma omp taskwait(mytask)

Mutual exclusion: Unlike ordered, which specifies

a particular sequential ordering, mutual exclusion facil-

ities such as critical sections and locks imply an

arbitrary, nondeterministic ordering. Mutual exclusion

violates Constraint 1 in Section 2.1 because it permits

multiple acquire/release pairings, as illustrated in Fig-

ure 3(d). While DOMP could emulate mutual exclusion

via deterministic scheduling, we prefer to focus on de-

veloping deterministic abstractions to replace common

uses of mutual exclusion, such as general reductions.

Flush: Some OpenMP programs implement custom

synchronization structures such as pipelines using the

flush (memory barrier) construct in spin loops. Like

mutual exclusion, DOMP omits support for such con-

structions, in favor of expressing dependency graphs

such as pipelines deterministically using task objects.

4 Implementing WC

We have implemented two early prototype implemen-

tations of WC: one that runs in user-space atop Linux

and uses mmap-based memory management techniques

similar to Grace [8], and one in the context of the exper-

imental Determinator OS [4]. Both of these prototypes,

however, support only strictly hierarchical synchroniza-

tion patterns, such as fork/join and barriers.

As one approach to implementing the generalized WC

model, we are extending Determinator’s virtual mem-

ory system to support a single producer multiple con-

sumer (SPMC) shared memory primitive. While De-

terminator normally constrains interprocess communi-

cation strictly to direct parent/child relationships, the

SPMC primitive allows a parent process to set up virtual

memory “communication channels” for communication

directly between different children, eliminating the par-

ent as a scalability bottleneck in subsequent computa-

tion. The kernel constrains these communication chan-

nels so as to preserve a strong guarantee of determinism

despite the “peer-to-peer” communication they support.

These SPMC channels thus form communication prim-

itives analogous to the Kahn process networks that WC

is conceptually based on, and atop which user-level code

can build shared memory parallel abstractions support-

ing nonhierarchical high-level synchronization.

To support SPMC, we extend the Determinator API

with two optional arguments (see Table 1) taken by the

existing Put/Get system calls [4].

A user process P calls Get with the Zero and Own op-

tions to get a Zero-filled SPMC virtual memory range,

and becomes the owner (producer) of that memory

range. P can transfer ownership of this SPMC memory

to any child by invoking Put with the Own, Copy op-

tions; the parent then becomes a consumer of the mem-



Put Get Option Description

X X Own PUT/GET the ownership of an

SPMC memory to/from child.

X Fix Fix the SPMC memory.

Table 1: Extended options to the Put and Get calls.

Figure 4: Processes can share several SPMC memories,

each of which has only one producer process, but multi-

ple consumer processes. The consumers can access the

memory after the producer fixes it.

ory range. P can also hand out consumer mappings of

the memory range to any number of child processes, by

calling Put with the Copy option.

Determinator maps the virtual memory ranges of the

producer and all consumers to the same physical mem-

ory, as shown in Figure 4. To ensure determinism, how-

ever, Determinator does not allow consumers to read a

memory range while the producer is writing to it. In-

stead, the kernel gives only the producer access to a

given SPMC memory page, until the producer fixes the

page by calling Get with the new Fix option. Once

Fixed, the producer loses the ability to write to the page,

but all consumers gain the ability to read the page, and

the page remains read-only for the rest of its lifetime.

If a consumer attempts to read a page before the pro-

ducer fixes it, the kernel blocks the consumer, to be

awoken later when the producer fixes the page. Deter-

minator in this way allows interprocess synchronization

to “short-circuit” the process hierarchy while preserving

the constraints of the deterministic model.

We believe that Determinator’s SPMC primitive will

be usable to implement parallel applications more

efficiently and scalably than the current Determina-

tor prototype, particularly for applications demanding

pipeline parallelism or “all-to-all” communication like

the MapReduce model. During a MapReduce, for exam-

ple, the map stage can create several SPMC memories

for each divided range of the input pairs, transfer own-

ership of each SPMC memory to each corresponding

worker, and set each worker to be a consumer of other

SPMC memories. Each worker performs its task con-

currently and fixes its owned SPMC memory after pro-

ducing its intermediate pairs. Determinator then makes

the map phase results directly available to the workers

starting their reduce phases as they become ready, with-

out requiring any coordination with a parent or master

thread that might become a scalability bottleneck.

While an early version of the SPMC extension is

working, we have not yet implemented the full WC

model atop it or ported suitable applications, so a more

thorough exploration remains for future work.

5 Related Work

WC conceptually builds on release consistency [21] and

lazy release consistency [28], which relax sequential

consistency’s ordering constraints to increase the inde-

pendence of parallel activities. WC retains these inde-

pendence benefits, adding determinism by delaying the

propagation of any thread’s writes to other threads un-

til required by explicit synchronization. This delaying

of writes is reminiscent of early parallel Fortran sys-

tems [5, 38], and of recent language features such as

Sieve [32] and isolation types [12].

Race detectors [20, 35] can detect certain heisen-

bugs, but only determinism eliminates their possibil-

ity. Language extensions can dynamically check deter-

minism assertions in parallel code [13, 37], but heisen-

bugs may persist if the programmer omits an assertion.

SHIM [18, 19, 40] provides a deterministic message-

passing programming model, and DPJ [9, 10] enforces

determinism in a parallel shared memory environment

via type system constraints. While we find language-

based solutions promising, parallelizing the huge body

of existing sequential code will require parallel program-

ming models compatible with existing languages.

DMP [6, 16] uses binary rewriting to execute exist-

ing parallel code deterministically, dividing threads’ ex-

ecution into fixed “quanta” and synthesizing an artifi-

cial round-robin execution schedule. Since DMP is ef-

fectively a deterministic implementation of a nondeter-

ministic programming model, slight input changes may

still reveal schedule-dependent bugs. Grace [8] runs

fork/join-style programs deterministically using virtual

memory techniques.

Replay systems can log and reproduce particular ex-

ecutions of conventional nondeterministic programs, for

debugging [15, 30] or intrusion analysis [17, 26]. The

performance and space costs of logging nondeterminis-

tic events usually make replay usable only “in the lab,”

however: if a bug or intrusion manifests under deploy-

ment with logging disabled, the event may not be sub-

sequently reproducible. In a deterministic environment,

any event is reproducible provided only that the original

external inputs to the computation are logged.

As with deterministic release consistency, transac-



tional memory (TM) systems [23, 39] isolate a thread’s

memory accesses from visibility to other threads except

at well-defined synchronization points, namely between

transaction start and commit/abort events. TM offers no

deterministic ordering between transactions, however:

like mutex-based synchronization, transactions guaran-

tee only atomicity, not determinism.

6 Conclusion

Building reliable software on massively multicore pro-

cessors demands a predictable, understandable program-

ming model, a goal that may require giving up sequen-

tial consistency and mutual exclusion. Workspace con-

sistency provides an alternative parallel programming

model as simple as “parallel assignment,” and supports

a variety of deterministic synchronization abstractions.
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