
John Wood
CPSC 490 Spring 1011
Advised by Bryan Ford

Determinating Mandelbrot:
Adding Provider-Enforced Deterministic Execution to the Cloud

Abstract

This project is based on the paper "Determinating Timing Channels in Compute Clouds" by Amittai
Aviram, Sen Hu, and Bryan Ford of Yale University, and Ramakrishna Gummadi of the University of
Massachusetts Amherst. The paper outlines a method of protecting against timing channel attacks in the
cloud by using provider-enforced deterministic execution. I have implemented this defense using the
research kernel Determinator, developed by the DEDIS group at Yale.

The basic idea of provider-enforced determinism is that you may trust the service provider (e.g.
Amazon), but you don’t necessarily trust fellow customers. If you are running on the same hardware as
an adversary, it leaves you open to timing channel attacks. For example: Alice runs a cloud compute
service where you can buy space and compute power on one of her machines. Bob opens an account
with Alice’s service in order to process some private financial data for his company, ACME. Eve also
gets an account with Alice’s service, and happens to get placed on the same machine as Bob. Bob, who
is none the wiser, starts the very computationally intensive process of crunching his company’s
numbers. Eve, who wishes to discover information about ACME’s finances, monitors the cache and
CPU behavior of the machine that she and Bob share, and is able to glean some meaningful information
from the results.

The solution to this problem that I have implemented is as follows: Cloud service providers such as
Alice provide gateways, to which users submit job requests and all the necessary inputs for that job.
The gateway sends the job off to be processed, and returns the results to the user. But the result is solely
a function of the input. This means that
Eve cannot possibly learn anything
about Bob’s job, because she must
submit explicit inputs, and her result will
depend only on those inputs, and not any
timing information from Bob.

For this project, The gateway is an
Apache server running on an Ubuntu
box, which communicates with the
Determinator kernel via Ethernet. The
job is a Mandelbrot set viewer, which
allows the user to pan and zoom into the
Mandelbrot set. All computations are run
on the Determinator kernel, which sends
the results (via Ethernet) back to the
Gateway to be displayed to the user.

http://dedis.cs.yale.edu/2010/det/papers/ccsw10.pdf

1. Gateway

The gateway provides a front-end web interface. It is a simple Mandelbrot set viewer that allows the
user to pan and zoom. When the user zooms in, a request is sent to the back-end. I have chosen a
Mandelbrot set viewer to make things interesting. Some sort of computationally intensive manipulation
of sensitive data probably would have made more sense given the context of timing channel attacks,
but frankly the implementation would not be very exciting. Calculating the Mandelbrot set can become
computationally intensive as the user zooms in closer and closer to the edge of the set, so this will
actually serve as a good test in that regard. The Mandelbrot set computation can also be made
extremely parallel, which makes it an excellent application to run on Determinator.

The gateway is running on an Ubuntu box with an Apache server. It has been written using PHP and
JavaScript, the source code can be found here. The interface displays the set in 100px x 100px chunks,
updating which chunks are displayed as the user pans.

When the user loads the page, the following code is executed:

This call to imsplit.php
splits a stock image of the
Mandelbrot set into the required
100x100px chunks. The stock
image is only 900px x 900px,
so if zoom is >1, the image will
be blurred. This is done to have
“blur on zoom” functionality, so
the user sees a lower resolution
image while Determinator
calculates the actual image. As
you can see in the image to the
right, the lower portion of the
set is blurred and waiting to be
calculated, where the top
portion has been calculated
already.

After the call to
imsplit.php, ethernet is
exec'd. The ethernet
executable communicates with
the Determinator kernel,
sending a work request, and
receiving the image chunks
from Determinator. These chunks are then displayed to the user.

http://zoo.cs.yale.edu/classes/cs490/10-11b/wood.john.jdw58/gateway.tar.gz

2. Communication

There is no TCP/IP stack in Determinator, so all communication is done via raw sockets. There were
two protocols defined for this project. One is the kernel mode protocol, which will stay the same for all
jobs, not just the Mandelbrot set viewer, and the other is the user mode Mandelbrot set viewer protocol,
which is specific to this project. My implementation of this protocol for the gateway sending and
receiving packets can be found in ethernet.c (ethernet.tar.gz), and the implementation of Determinator
sending and receiving them can be found in kern/net.c and user/mandelbrot.c (determinator.tar.gz).

2.1 Kernel Mode Protocol

2.1.1 Sending a Work Request

To send a work request to Determinator, a net_work_pkt is sent, and the type field of
net_ethhdr must be NET_ETHERTYPE_WORK. The data_buffy field is filled with whatever
user mode specific data is necessary for the job. The kernel adds data_buffy to a queue of work
requests kept in kernel mode, and does nothing with the data. This makes the protocol extensible – if
other jobs are implemented, they need only be implemented in user mode, and the kernel does not need
to be recompiled.

2.1.2 Receiving a Response from Determinator

Determinator also sends it's response in a net_work_pkt (or multiple net_work_pkts), and once
again, the kernel does not know what is in data_buffy. Determinator signals that it is finished
sending by sending a net_work_pkt where data_len is 0.

http://zoo.cs.yale.edu/classes/cs490/10-11b/wood.john.jdw58/determinator.tar.gz
http://zoo.cs.yale.edu/classes/cs490/10-11b/wood.john.jdw58/ethernet.tar.gz

Sending is accomplished with the system call sys_send:

dst is a pointer to the destination MAC address, buffy is a pointer to the data to be sent, and size
is the size of the data pointed to by buffy.

2.2 User Mode Mandelbrot Protocol:

2.2.1 Sending a Work Request

In our case, we fill the data_buffy field of net_work_pkt with a mandelbrot_work struct.
Zoom is self explanitory, resolution is a variable that changes how the set is colored, and color
is either BLUE, GREEN, or RED. Lower resolution means that we are more strict about what is
considered “inside” the set, and higher resolution means that we are less strict. Resolution is a bit
of a misnomer, but has been kept for historical reasons.

2.2.2 Receiving a Response From Determinator

Determinator sends us net_work_pkts containing jpeg structs inside data_buffy. X and y are
coordinates of each 100px x 100px chunk of the Mandelbrot set. When we have received all data for
image (x, y), no data is send after x and y.

3. Determinator Back End

There have been both user mode and kernel mode changes to the Determinator kernel. Unfortunately, I
cannot make the entire source code accessible, since Determinator springs from Pios, used to teach
CPSC422, but if you are interested in obtaining the entire source, please email me at
john.wood@yale.edu.

3.1 Kernel Mode Changes

Kernel mode changes to Determinator were made in 3 areas. Libjpeg was ported to run on

Determinator, networking was modified to implement the communication protocol described in section
2.1, and two system calls were added.

3.1.1 libjpeg

Much of the C library has been ported to run on Determinator, so the back end has been written with
this limited subset, but libjpeg did need to be ported for this project. I ported libjpeg version 6b, which
is an older version, but was easier to port than newer versions.

3.1.2 Networking

As mentioned in section 2.1, when the kernel receives a work request in kern/net.c, it is added to a
queue. The work queue implementation can be found in kern/work.c. (determinator.tar.gz)

3.1.3 System Calls

Two system calls were added:

sys_send has already been described in 2.1.2. sys_getwork removes the first item off of the work
queue and copies size bytes of the data into user_buffy.

3.2 User Mode Changes

The only user mode changes were to write the application mandelbrot to run on the determinator
kernel. The implementation can be found in user/mandelbrot.c (determinator.tar.gz).

mandelbrot waits for work to appear in the work queue. When work is received, it forks a child to
do the computations described in the mandelbrot_work struct of the work request. It then begins to
create a (NORMAL*zoom) px x (NORMAL*zoom) px image of the Mandelbrot set, where NORMAL is
currently defined as 900px.

Mandelbrot calculates 100px x 100px chunks of the image in parallel and then sends them back to the
gateway to be displayed.

Future Work

There are several areas of this project that could use improvement. The first of them is in the web
interface. The way I have implemented panning, I track mouse movement, and then update the “src”
field of each “img” tag based on the movement. The problem here is that the images change. For
example, img000_000.jpg at first refers to the blurred version of the image created by imsplit.php
(described in section 1). Then, when Determinator sends us the correct version, img000_000.jpg is
overwritten with the new version, but the browser doesn't know that. No-cache headers are of no use in
this instance either. So my solution is to append a timestamp to the end of each “src”, since when the
browser sees a source that it hasn't before, it will query the server for the fresh image. The granularity
of this timestamp is 3 seconds, so every three seconds, the server has to send an updated version of
each image. This is a pretty big performance hit.

http://zoo.cs.yale.edu/classes/cs490/10-11b/wood.john.jdw58/determinator.tar.gz
http://zoo.cs.yale.edu/classes/cs490/10-11b/wood.john.jdw58/determinator.tar.gz

The second issue is in the back end implementation. Right now, only one gateway can access the
Mandelbrot set viewer at a time, otherwise files will get overwritten on the server. A fairly easy way to
remedy this is to append the host name and timestamp of each request to the image files on the server.
So instead of naming them imgXXX_YYY.jpg (the current format), they would be
img_ipaddress_timestamp_XXX_YYY.jpg. This would mean that no requests would conflict with one
another.

And third, the implementation of the work queue needs some work before it is truly extensible. Right
now, sys_getwork just gets the first item off of the work queue, but if we have more than one job,
the queue will hold requests for many different jobs, and we won't be able to tell the difference.
sys_getwork should take another parameter, job_id, and return the first work request for job
job_id. This means that each job needs a unique job_id, and also suggests that a work request
queue is no longer an appropriate data structure. Instead, we should use an array of queues, indexed by
job_id, so that each job can have it's own work request queue.

Conclusion

This has been an extremely rewarding and interesting project. If you would like a demonstration, email
me at john.wood@yale.edu.

