
Lazy Tree Mapping: Generalizing and Scaling Deterministic Parallelism

Yu Zhang (yuzhang@ustc.edu.cn)
University of Science and Technology of China

Bryan Ford (bryan.ford@yale.edu)
Yale University

Abstract
Many parallel programs are intended to yield determinis-
tic results, but unpredictable thread or process interleav-
ings can lead to subtle bugs and nondeterminism. We
are exploring a producer-consumer memory model—
SPMC—for efficient system-enforced deterministic par-
allelism. However, the previous eager page mapping
wastes physical memory, and cannot support large-size
and real applications. This paper presents a novel lazy
tree mapping approach to the model, which introduces
“shadow page table” for allocating pages “on demand”,
and extends an SPMC region by a tree of lazily gener-
ated pages, representing an infinite stream on reusing a
finite-size of virtual addresses. We build DLINUX to em-
ulate the SPMC model entirely in Linux user space to
make the SPMC more powerful. DLINUX uses virtual
memory to emulate physical pages, and sets up page ta-
bles at user-level to emulate lazy tree mapping. Atop the
SPMC, DetMP and DetMPI are explored and integrated
into DLINUX, offering both thread- and process-level de-
terministic message passing programming. Experimen-
tal evaluations suggest lazy tree mapping improves mem-
ory use and address reuse. DLINUX scales close to ideal
with 2048*2048 matrices for matmult, and better than
MPICH2 for some workloads with larger input datasets.

1 Introduction

While many parallel programs are intended to be de-
terministic, unpredictable thread or process interleaving

can lead to bugs and nondeterminism [1, 12, 13], which
makes it difficult to write and debug parallel programs.
Experimental languages such as DPJ [6] and SHIM [9]
have explored the appeal and benefits of “determinis-
tic by default” programming models, offering promising
alternatives, but require developers to adopt unfamiliar
coding styles, type systems or parallel constructs.

Deterministic runtimes [2, 3, 5, 7] can reproducibly
execute code written in existing languages, but making
them scale remains a challenge [16]. Grace [5] and
Determinator [2] support only hierarchical synchroniza-
tion such as fork/join, making interactions between child
threads and their common parent a likely scalability bot-
tleneck. CoreDet [3] and TERN [7] support arbitrary
synchronization primitives, but a central scheduler in
them synthesizes and imposes on all threads an artificial
“time” schedule, becoming a scalability bottleneck. To
be viable in the long term as core counts increasingly
drive “the new Moore’s Law”, deterministic runtimes
will need to support non-hierarchical, “peer-to-peer”
communication and synchronization patterns, without
introducing bottlenecks such as centralized schedulers.

As a possible foundation for more scalable determinis-
tic parallelism, we introduced a producer-consumer vir-
tual memory model—SPMC [19]. As with traditional
shared memory, multiple processes, each with its own
private address space, can directly “share” an SPMC
memory region through memory mappings. To make
shared memory access deterministic, however, only one
producer ever has write access to an SPMC region, and
the remaining consumers cannot read a location in the
region until the producer explicitly fixes it, rendering it
read-only. Multiple consumers can read the same region,
supporting multicast communication.

At first attempt, we enhanced the Determinator OS
kernel to prototype SPMC region primitives, denoted
xDet, and established a user-level library—DetMP—
atop it, offering a high-level channel abstraction for de-
terministic message passing [19]. A straightforward

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’13, July 29-30 2013, Singapore, Singapore
Copyright 2013 ACM 978-1-4503-2316-1/13/07 ...$15.00.

Acronym Description
xDet Determinator extended with SPMC virtual memory

DLINUX Linux shielded with SPMC model to ensure determinism
DetMP a thread-level deterministic message passing library

based on SPMC channel abstraction
DetMPI a core subset of MPI implemented based on SPMC model

Table 1: Acronyms and their explanation.

eager page mapping was used in xDet to maintain
producer-consumer page sharing relationship. That is,
the kernel must allocate all physical pages for an SPMC
region once it is shared, even if many of those pages
have not yet been—and perhaps may never be—actually
“touched” by the producer or consumers. Since each pro-
cess has finite address space, if the producer could fix
each page in a region only once, SPMC regions used for
inter-process communication (IPC) would thus finally
“run out of space”, and become unusable for further IPC.

To save physical memory and make the SPMC model
more powerful for scalable deterministic parallelism, we
propose a novel lazy tree mapping approach, which con-
tains two orthogonal techniques, lazy page mapping and
space extension. The former introduces a shadow page
table to initially maintain producer-consumer relation-
ship on a potentially large SPMC region and allocates
physical pages for the region only “on demand”. The
latter extends an SPMC region by an arbitrarily deep tree
of lazily-generated pages, which can represent an infinite
stream on reusing a finite-size of virtual addresses.

Since Determinator is 32-bit and limited to using at
most 1GB of physical memory, xDet is restricted to
only support small programs even using lazy tree map-
ping. To generalize the SPMC model and support larger
and more realistic applications, we built DLINUX, which
retrofits SPMC into Linux, analogous to the way dOS [4]
retrofitted CoreDet into Linux. DLINUX aims to offer de-
terministic thread-level and process-level parallelism on
Linux via virtual memory technology. For quick proto-
typing, DLINUX emulates SPMC with lazy tree mapping
entirely in Linux user space, via disciplined use of con-
ventional mmap memory. Beyond porting DetMP into
DLINUX, we built DetMPI atop DetMP, offering back-
ward compatibility with legacy MPI [15] applications.
Table 1 lists these acronyms, where xDet and DLINUX

are foundation systems, while DetMP and DetMPI are
libraries integrated into both xDet and DLINUX.

Experiments with parallel workloads suggest that the
lazy tree mapping approach significantly improves mem-
ory use and address space reuse in SPMC regions on
both DLINUX and xDet. DLINUX can run a larger
set of practical applications deterministically than xDet,
and exhibits performance and scalability comparable to
nondeterministic environments, such as a popular MPI
implementation—MPICH2-1.4 [14] on matmult, word-
freq and rmat workloads with larger input datasets.

This paper makes three main contributions. First,
we enhance our SPMC model with lazy tree mapping
to make it powerful for scalable deterministic paral-
lelism. Second, we build DLINUX, retrofitting SPMC
into Linux, to offer backward compatibility and sup-
port more realistic applications. Third, we integrate
two deterministic message passing API layers, DetMP
and DetMPI, into both DLINUX and xDet, offering con-
venient and backward-compatible parallel programming
models. Performance results on these prototypes indicate
that the SPMC virtual memory foundation may be a re-
alistic and useful approach to deterministic parallelism.

The remainder of the paper is structured as follows.
Section 2 presents the SPMC model and lazy tree map-
ping approach. Section 3 presents DLINUX. Section 4
evaluates the prototype, and Section 5 concludes.

2 SPMCMemory Model

The SPMC memory model is intended to offer a vir-
tual memory foundation for scalable deterministic par-
allelism at OS-level, supporting programming in exist-
ing languages, such as C. In addition to allow read-only
memory sharing among processes via copy-on-write, it
offers a deterministic read-write memory sharing, allow-
ing a process P to establish direct “peer-to-peer” SPMC
regions between its arbitrary descendants, eliminating P
as a scalability bottleneck in subsequent computation.

2.1 Basic Semantics of SPMC Regions

An SPMC region is a piece of restricted read-write shar-
ing virtual memory. It is introduced by distinguishing
two types of memory mappings mapped to the same
physical pages, as shown in Fig. 1. A given shared phys-
ical page has only one producer mapping at a time in
one process’s address space, and any number of con-
sumer mappings in other processes, however. An SPMC
implementation should enforce a protocol that: 1) con-
sumers have no access to an SPMC page while the pro-
ducer is writing to it, 2) the producer can write to an
SPMC page many times but then fix it at most once, and
3) once the producer explicitly fixes an SPMC page, it
loses write permission and becomes a consumer, while
all consumers then have read permission to it. The pro-
tocol constrains SPMC regions to guarantee determinism
despite in the presence of this “peer-to-peer” communi-
cation. SPMC regions thus form communication primi-
tives analogous to Kahn process networks [10].

An SPMC implementation can use page-based address
translation to give each process an independent address
space, enforcing inter-process protection and isolation.
It can track and enforce memory access control through
page-level protection bits in page table entries (PTE).

2

Figure 1: Processes sharing SPMC regions.

2.2 Eager vs. Lazy Page Mapping

One key design issue is how to efficiently maintain
producer-consumer page sharing relationship. Our pre-
vious eager page mapping policy implemented in xDet
requires that physical pages for an SPMC region should
be allocated once it is shared, even if many of those pages
have not yet been—and perhaps may never be—actually
“touched” by the region’s producer or consumers.

To conserve physical memory, we design a lazy page
mapping policy, where physical pages for an SPMC re-
gion are allocated only “on-demand”. When a process
creates an SPMC region, mappings in the region are not
filled with “real” pointers to physical pages (since they
haven’t been allocated yet), but rather with pointers to a
common shadow page table (see Fig. 2(a)). The shadow
page table is a page that mirrors the structure of a nor-
mal lowest-level page table, containing a list of page
mappings—all initially null (unallocated)—to be filled
incrementally as pages in the region are touched. For
SPMC pages not yet allocated, the sharing relationship is
among the set of processes with mappings pointing to the
same shadow page table. Mappings pointing to shadow
page tables always have their “valid” flags clear, so that
application code can never access shadow page tables di-
rectly. Any attempt to access such a mapping from the
producer or a consumer causes a page fault. If it comes
from the producer, the touched unallocated page is allo-
cated, and the faulting PTE as well as the correspond-
ing shadow PTE are replaced with a regular page map-
ping of the newly allocated page (see P1 in Fig. 2(b)).
When a consumer subsequently attempts to read the un-
fixed page, it still causes a page fault, at which point
page fault handler looks up the actual page mapping in
the shadow page table, and replaces consumer’s mapping
with a mapping of the actual page (see Fig. 2(c)).

If a consumer attempts to read an SPMC page before
the producer has touched it, the page fault handler blocks
the consumer and adds it to a wait list whose “head
pointer” is kept in the corresponding shadow PTE—
which is available for this purpose because it does not
yet hold a pointer to an actual page. Once the producer
touches an address corresponding to the shadow PTE, a
new page is allocated and the wait list is moved from the

shadow PTE into the per-page metadata structure asso-
ciated with the new page. Once the producer fixes the
page, all waiting consumers can then be awakened.

With this shadow page table mechanism, for an SPMC
region of n-page size, initially only a shadow page need
be allocated on creation, then actual pages are allocated
on demand, avoiding allocating all n pages in advance. In
the common case in which an application creates large
SPMC regions for efficient communication, but often
only ever uses a few pages in the region, the lazy page
mapping policy can save large amounts of memory.

2.3 Space Extension via Tree Mapping

Since each process has finite address space, if the pro-
ducer can only fix each virtual address at most once,
SPMC regions used for IPC would thus eventually “run
out of space”, and become unusable for further IPC. Al-
lowing a producer to “un-fix” and “re-fix” previously-
fixed pages would introduce tricky synchronization chal-
lenges and make it harder to ensure determinism. To
avoid these challenges, instead a producer is allowed to
extend an SPMC region to represent as not just a “flat”
list of pages, but an arbitrarily deep logical tree of lazily-
generated pages, which can represent an infinite stream
like a pipe or socket, or any lazy data structure.

To extend an SPMC region, a producer avoids writing
to or fixing one or more pages in the region, reserving
these pages instead as extension pages. When the pro-
ducer needs more pages—eg.,when it has filled and fixed
the rest of the region—the producer invokes an extend
call to expand a reserved extension page in the existing
region, to form a new set of producer mappings repre-
senting fresh pages. The producer can expand these fresh
mappings either into a different part of the producer’s ad-
dress space, or into the same address range the original
region occupied if the producer is finished with the ex-
isting region, thereby reusing the address range to rep-
resent a new “generation” of fresh SPMC pages. These
fresh producer mappings inherit all the properties of the
original ones, including their usability either as regular
or (recursive) extension pages: hence the capability to
represent infinite streams or trees.

Producers and consumers must agree on which pages
are regular data pages and which are extension pages.
A consumer must not attempt to read an extension page
(doing so causes a trap), but expands the page into a cor-
responding, fresh set of consumer mappings—in either
the same or a different range of the consumer’s address
space—just as the producer does. The expanded map-
pings then become regular consumer mappings, linked
to the corresponding producer mappings, which the con-
sumer can in turn read or recursively expand.

When a producer calls extend, the handler creates an

3

(a) (b) (c) (d)

Figure 2: Mechanism of SPMC virtual memory with lazy page mapping and space extension.

extension page and links the old shadow page table to it
(see B in Fig. 2(d)), then creates fresh producer mappings
pointing to the new extension page (see A in Fig.(d)).
The extension page henceforth becomes simply a “next-
generation” shadow page table for the producer. The ex-
panded mappings may overwrite previous SPMC map-
pings if the extension is reusing virtual addresses. Over-
writing the original mappings, however, will not over-
write the original shadow page table or the original pages
it pointed to, which consumers may still need to read.

When a consumer calls extend, the handler first tests
whether the corresponding shadow PTE has been “pro-
duced” as either a data page or an extension page, and if
not, blocks the consumer in the usual way until the page
is produced. If the page was produced as a data page—
indicating that producer and consumer “disagree” about
the page’s use—then the consumer takes a trap. If the
page was produced as an extension page, however, the
handler then creates a list of consumer mappings point-
ing to that extension page, just as the producer does. All
pages, including data and extension pages, as well as
shadow page tables, are reference-counted, so a shadow
page table and the pages it refers to get garbage-collected
once the producer and all consumers have overwritten or
otherwise destroyed all mappings referencing them.

3 DLINUX:Linux-based Implementation

We now describe DLINUX, a system built on Linux to
offer the SPMC virtual memory foundation for scalable
deterministic parallelism. DLINUX (see Fig. 3) currently
includes five parts, i.e., SPMC-based thread/process—
space—management, SPMC region primitives, the
DetMP and DetMPI layers, and somemicrobenches. The
former two form the core layer of DLINUX, and are
emulated entirely in Linux user space for quick pro-
totype. The latter three parts can be reused in either
DLINUX or xDet with a few modifications. Overall,
we wrote roughly 13500 lines of C code to implement
DLINUX, including 3000 lines of code for the core layer,
roughly 2000 lines for the DetMP, roughly 4000 lines for
the DetMPI as well as an additional perl script for gen-
erating Fortran MPI interface and wrapper function files,

and roughly 4500 lines for the microbenches.

Spaces. DLINUX executes application code within an
arbitrary hierarchy of spaces. Term “space” is followed
by Determinator to highlight differences from Linux pro-
cesses or pthreads, avoiding confusion with “pro-
cess” and “thread” abstractions DLINUX emulates. De-
terminator gives a space no physically shared mem-
ory but read-only sharing via copy-on-write; it emu-
lates shared memory using “copy-at-fork, merge-at-join”
techniques. While DLINUX allows sharing SPMC re-
gions among spaces, not merely read-only sharing. Sim-
ilar to Grace [5] DLINUX emulates spaces using Linux
processes to achieve cross-space memory isolation by
default. DLINUX requires to manage shared memory ex-
plicitly, and provides a set of API for thread-/process-
level programming by wrapping spaces.

Deterministic Space Index. Linux does not guarantee
the value of a process ID deterministic. To avoid ex-
posing this nondeterminism to spaces running as Linux
processes, DLINUX returns a unique internal space in-
dex to a space, which is managed using a counter field
in a single global structure. The index is also used to
manage per-space heaps and as offset into an array of
space entries in the global structure. The global struc-
ture is kept in an mmap shared memory, and initialized
in spmc init(), which is directly or indirectly called
by application code. For example, spmc init() in
DetMPI might be called by MPI Init() or mpiexec
to initialize DLINUX, depending on how to launch MPI
processes. For simplicity, DLINUX fixes total number of
spaces, specified by the argument of spmc init().

Heap. DLINUX supports memory allocation by giv-
ing each space a separate sub-heap, managed by a vari-
ant of Doug Lea’s malloc [11] with about 170 modi-
fied lines of code. When receiving the first allocate re-
quest from application code before spmc init() call
or calling spmc init() before any allocate requests,
DLINUX initializes a fixed size of mmap private memory
as the whole area for all sub-heaps. DLINUX considers
the above two cases to ensure all sub-heaps occupy dis-
joint memory, and creates anmspace (used in Doug Lea’s
malloc) for each space to ensure addresses of the mspace
are indeed in the space’s sub-heap range.

4

Figure 3: System overview. Figure 4: Emulating page mapping in Linux user space.

SPMC Shared Memory. DLINUX cannot control actual
page mappings in Linux kernel due to emulating SPMC
regions entirely in user space. To emulate the page map-
ping policies in Section 2, DLINUX creates an mmap
shared memory—EMEM—to emulate physical memory,
and establishes per-space page tables to map each space’s
SPMC regions to the EMEM (see Fig. 4).

To ensure an unfixed write to an SPMC region invis-
ible to all consumers, a private mmap memory is cre-
ated as SPMC VM in the root space, and copied to
child spaces on space creation, ensuring SPMC VMs in
all spaces occupy the same addresses and isolate each
other. The shared EMEM consists of an array of emu-
lated physical pages—epages, and a corresponding ar-
ray of pageinfos containing per-page metadata, totally
emulating physical memory management needed in Sec-
tion 2. A 4KB epage can be allocated as an SPMC data
page, a shadow page table, or an extension page.

For simplicity, DLINUX creates a shared mmap mem-
ory to manage per-space one-level page tables, mapping
a space’s SPMC VM to epages. An SPMC page has a
corresponding 32-bit PTE in per-space page table, where
Bit 31 is always 0, Bits 3 through 30 provide index of an
epage in EMEM, and Bits 0 through 2 are P, W, O flags in
turn to control access to an epage. P flag, i.e.,valid flag,
indicates whether the epage is present or not, W flag in-
dicates whether the epage is writable or not, and O flag
indicates whether it is a producer PTE or not. We use 32-
bit PTE just for memory saving, and based on this design,
DLINUX can already support up to 228 4KB-epages.

Implementation of SPMC Regions. DLINUX provides
a set of SPMC region primitives as follows.
- spmcR alloc(va, size), which allocates a specified offset
region [va, va+size) in the current space’s SPMC VM.
- spmcR transown(sid, sva, dva, size), which transfers
producer mappings from the current space to space sid,
making the current space a consumer.
- spmcR copycons(sid, sva, dva, size), which copies con-
sumer mappings from the current space to space sid.
- spmcR setfix(va, size), which fixes the specified region
in current space, setting it read-only, then awakens each
waiting consumer.
- spmcR extend(extva, va, size), which extends region

[va, va+size) via an extension page at extva.

DLINUX elaborates access permission transitions for
SPMC regions via disciplined use of mprotect sys-
tem calls. Thus some read/write operations on SPMC re-
gions from application code would trigger segmentation
faults, the control is then transferred to the segmentation
fault handler, emulating page faults and control transfer
needed in Section 2. In response to SPMC primitive calls
and segmentation faults, DLINUX performs page map-
ping and SPMC region protection operations.

When an SPMC region is created, it is set to
PROT NONE via mprotect. Any attempt to access
PROT NONE memory from application code triggers a
segmentation fault, DLINUX then allocates a data epage
mapped to the faulting PTE in the segmentation fault
handler. Once a producer PTE has mapped to a data
epage, the corresponding SPMC page in the producer’s
SPMC VM is upgraded to PROT WRITE, so that the pro-
ducer can directly write to the page. When the producer
fixes an SPMC page, DLINUX first copies the content
from the SPMC page to the corresponding epage, so that
consumers can access later, then downgrades the SPMC
page to PROT READ, finally awakens each consumer
waiting for the page using kill() system call.

For a consumer, an SPMC region is set to
PROT NONE initially. Any attempt to access the re-
gion from application code triggers a segmentation fault,
then the handler checks whether the corresponding data
epage has been fixed or not. If not, sigsuspend()
system call is invoked to block the consumer. Once the
blocked consumer is awakened or the data epage is fixed,
DLINUX copies the content from the epage to the SPMC
page, and sets the SPMC page PROT READ. Thus the
consumer can read data directly from its SPMC pages.

DetMP DetMP atop SPMC regions, offers a high-
level channel abstraction for point-to-point and collec-
tive message passing programming.

We originally developed DetMP atop xDet [19]. Each
channel is implemented as a fixed-size SPMC region
holding a series of messages sent by the producer. Each
message is internally page-aligned, occupying a contigu-
ous range of pages in the region, and is fixed at page
granularity. DetMP maintains metadata to record status

5

of active channels, such as offsets at which a producer
puts or a consumer gets the next message in the SPMC
region. For quick prototype, our algorithms on collective
communications are straightforward and unoptimizable.

By means of space extensionmechanism, we upgraded
DetMP to support sending a message larger than avail-
able capacity in the channel. We also ported the updated
DetMP into DLINUX by updating inconsistent SPMC re-
gion primitives and system calls used.

DetMPIWe develop DetMPI atop DetMP, a determinis-
tic runtime offering backward compatibility with legacy
MPI programs in C or Fortran, hiding channels from
users. DetMPI provides MPI object management, most
MPI’s point-to-point communication and collective com-
munication functions within intra-communicators, pro-
cess management simply implementing mpiexec, and
Fortran binding module. It has been integrated into both
xDet and DLINUX. Due to limitations on space, we only
discuss channel management in DetMPI.

To manage channels implicitly used in communication
for any MPI application, DetMPI classifies channels into
several kinds: P2P (process-to-process), M2S (master-
to-one-slave), S2M (one-slave-to-master), P2N (process-
to-next), P2A (process-to-all), M2A (master-to-all) and
S2A (slave-to-all). DetMPI allocates channels and as-
signs them to MPI processes as part of MPI Init().
mpiexec in DetMPI allows users to configure channel
kinds that might be used in running an MPI program, eg.,

mpiexec -p2p -p2a -s2m -n 4 is.W.4
starts is.W.4 with an MPI COMM WORLD whose group in-
cludes 4 processes, and creates P2P, P2A, S2M channels.

The default channel kinds include the universal set,
i.e., M2S, S2M, P2P, P2A, supporting all DetMPI com-
munication operations. For n processes, the total number
of channels is at most (n2+n-1), including (n-1) M2S, (n-
1) S2M, (n-1)2 P2P and n P2A channels.

4 Evaluation
4.1 Workloads

NPB-MPI benchmark suite [8]. It contains two pro-
grams in C and seven programs in Fortran. Each work-
load includes S,W,A,B,C input dataset classes. We omit
C since some (i.e.,FT.C.1) are built error in C class.

wordfreq and rmat. These two workloads come from
MR-MPI library [17], which is an implementation of
MapReduce written in C++ on top of the standard MPI.
Input datasets for wordfreq come from Phoenix[18], in-
cluding 10MB, 50MB and 100MB input files. Since
wordfreq decides the number of mappers according to the
number of input files, we use 16 copies of each dataset to
run wordfreq with at most 16 processes. Input datasets
for rmat are rmat-20 (around 8M edges) and rmat-24

(around 134M edges), both of which use parameters (a,
b, c, d) = (0.57, 0.19, 0.19, 0.05) and generate 8 edges
per vertex (on average).

matmult-mp, matmult-mpi. These two are parallel ma-
trix multiplication workloads implemented in DetMP
and standard MPI APIs, respectively.

The experiments ran on a 32-core 2.0GHz 4×Xeon
E7-4820 server with 128GB RAM. The Linux distribu-
tion is Ubuntu 12.04. Workloads were built as 64-bit
executable programs with gcc v4.4.7 for MPICH2 and
DLINUX, and 32-bit for xDet. Each workload is exe-
cuted 10 times. To reduce the effect of outliers, the low-
est and highest runtimes for each workload are discarded,
so each result is the average of the remaining 8 runs.

4.2 Capability

First, we examine the importance of space extension. As-
sume 252MB SPMC memory is set aside for channel in-
odes. If no space extension, channel size has to be set
large enough to hold all messages sent to the channel,
thus a channel may occupy one or more inodes. If size
of a channel inode is fixed to 4MB, at most 63 channels
can be created, and support communication among less
than 8 processes with default channel kinds. With space
extension, a channel occupies just one inode, which size
can be set smaller (but reusable), eg.,512KB, allowing up
to 504 (> 162+16−1) channels. For rmat-24 with 2 pro-
cesses on DLINUX, a channel once saves a single mes-
sage of size 32.2MB, and total messages of 923.6MB.

Second, all NPB and MR-MPI workloads can be built
and run unmodified on DLINUX, except changing a static
array in wordfreq to be dynamically-allocated due to
large size. But only NPB workloads in small dataset can
run on xDet, MR-MPI workloads fail in building due to
incomplete libc and libc++ support in xDet.

Third, we examine input datasets of NPB supported
by xDet with or without space extension, and DLINUX,
using up to 16 processes. Only IS, FT, and EP on class S
work on xDet without space extension with 1–16 pro-
cesses. While on xDet with space extension, all S,W
workloads except LU and SP work with 1–16 processes.
On DLINUX, all S, W, A, B workloads work with 1–16
processes, illustrating that DLINUX is the most powerful,
and xDet without space extension is the weakest.

4.3 Single-node Multicore Performance

We now compare the performance of xDet and DLINUX,
against the mature but nondeterministic MPICH2. Table 2
shows speedup and runtime relative to MPICH2 compar-
isons of matmult among xDet, DLINUX and MPICH2. We
cannot obtain results of 2048*2048 matrices on xDet due
to the memory limitation of xDet. From the table, we

6

N
P
ro
c 1024*1024 2048*2048

mpich dlinux xDet mpich dlinux
mpi mp mpi mp mpi mpi mp mpi

Sp
ee
du

p

1 1 1 1 1 1 1 1 1
2 1.96 1.89 1.89 1.98 1.97 1.87 1.83 1.78
4 3.88 3.59 3.6 3.88 3.6 3.7 3.7 3.66
8 7.36 6.49 6.46 7.48 3.18 6.16 7.18 7.13
16 12.03 10.539.84 12.023.02 8.84 13.0113.09

T
/T

m
pi
ch

1 1.00 1.00 1.00 1.05 1.01 1.00 0.99 0.99
2 1.00 1.04 1.00 1.01 1.01 1.00 1.01 1.02
4 1.00 1.08 1.00 0.98 1.09 1.00 1.00 1.01
8 1.00 1.13 1.00 0.91 2.37 1.00 0.85 1.00
16 1.00 1.14 1.07 0.86 4.02 1.00 0.67 0.99

Table 2: Speedup and overhead matmult.

N
P
ro
c wordfreq rmat

10MB*16 50MB*16 100MB*16 rmat-20 rmat-24
SM SD SM SD SM SD SM SD SM SD

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 2.03 1.89 1.61 1.54 1.50 1.49 2.17 2.14 1.80 1.81
4 3.70 3.29 2.96 2.76 2.85 2.68 3.85 3.76 3.89 3.78
8 8.47 6.49 5.35 5.26 4.29 4.16 10.55 8.48 6.91 6.23
16 13.318.66 5.86 6.04 4.87 4.69 14.3511.77 9.41 9.78

TM(s) R TM(s) R TM(s) R TM(s) R TM(s) R
1 15.1 0.97 53.9 1.01 134.1 1.02 57.3 0.97 942.31.06
2 7.4 1.05 33.6 1.06 89.3 1.03 26.4 0.99 522.81.06
4 4.1 1.09 18.2 1.09 47.1 1.08 14.9 1.00 242.01.10
8 1.8 1.27 10.1 1.03 31.3 1.05 5.4 1.21 136.41.18
16 1.1 1.50 9.2 0.98 27.5 1.06 4.0 1.19 100.21.02
* SM ,SD-speedup on mpich and on dlinux
TM ,TD-runtime in seconds on mpich and on dlinux, R= TD/TM

Table 3: Speedup and overhead wordfreq and rmat.

find the performance and scalability of matmult-mp on ei-
ther xDet or DLINUX are always better than matmult-mpi,
and matmult-mpi meets serious performance problem on
xDet. MPICH2 has the best performance for 1024*1024
matrices, but scales worse than DLINUX for larger input
dataset—2048*2048 matrices.

Table 3 compares DLINUX against MPICH2 us-
ing wordfreq and rmat. DLINUX scales worse than
MPICH2 for smaller dataset, eg., rmat-20, but a little
better than MPICH2 for larger dataset. Runtimes on
DLINUX are a little longer but acceptable (mostly < 1.1×
Tmpich) than MPICH2, since DLINUX emulates page map-
ping in user space, while MPICH2 directly uses shared
memory for communication on multicore systems.

For NPB, due to space limitations, we do not present
detailed results here, but summarize some conclusions
we found. Currently only EP exhibits close to ideal scal-
ability on DLINUX, and others scale lower than MPICH2.
By modifying algorithms of Alltoall and Alltoallv,
performance of IS and FT on DLINUX are improved
a lot, illustrating room for improving algorithms on
channel based collective communications. With input
datasets becoming larger, runtimes on DLINUX move a
step closer to those on MPICH2.

5 Conclusion

We believe that SPMC offers a promising virtual mem-
ory foundation for scalable deterministic parallelism.
DetMP and DetMPI on DLINUX have shown the capabil-
ity of lazy tree mapping, and good performance on some
workloads with large input datasets. We also realize that
communication algorithms in DetMP are very unopti-
mizable, causing poor performance on most NPB work-
loads. In the future we expect to optimize DLINUX and
explore more efficient programming models atop SPMC.

Acknowledgments. The authors thank Huifang Cao for testing pre-
release versions. This work was supported in part by the National High
Technology Research and Development Program of China (863 Pro-
gram) grant (No.2012AA010901), and the National Natural Science
Foundation of China grant (No.61229201).

References

[1] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data
races. In VVEIS, pages 82–93, April 2003.

[2] Amittai Aviram et al. Efficient system-enforced deterministic
parallelism. In 9th OSDI, October 2010.

[3] Tom Bergan et al. CoreDet: A compiler and runtime system for
deterministic multithreaded execution. In 15th ASPLOS, March
2010.

[4] Tom Bergan et al. Deterministic process groups in dOS. In 9th
OSDI, October 2010.

[5] Emery D. Berger et al. Grace: Safe multithreaded programming
for C/C++. In 24th OOPSLA, October 2009.

[6] Robert L. Bocchino et al. A type and effect system for determin-
istic parallel Java. In OOPSLA, October 2009.

[7] Heming Cui et al. Stable deterministic multithreading through
schedule memoization. In 9th OSDI, October 2010.

[8] Rob F. Van der Wijingaart. NAS parallel benchmarks version 2.4.
Technical Report NAS-02-007, NASA Ames Research Center,
October 2002.

[9] Stephen A. Edwards et al. Programming shared memory mul-
tiprocessors with deterministic message-passing concurrency:
Compiling SHIM to Pthreads. In DATE, March 2008.

[10] Gilles Kahn. The semantics of a simple language for parallel
programming. In Information Processing, pages 471–475, Ams-
terdam, Netherlands, 1974. North-Holland.

[11] Doug Lea. A memory allocator, 2000.
[12] E.A. Lee. The problem with threads. Computer, 39(5):33–42,

May 2006.
[13] Shan Lu et al. Learning from mistakes — a comprehensive study

on real world concurrency bug characteristics. In 13th ASPLOS,
pages 329–339, March 2008.

[14] Mathematics and Computer Science Division Argonne National
Laboratory. MPICH2-1.4: a high-performance and widely
portable implementation of the MPI standard, June 2011.

[15] Message Passing Interface Forum. MPI: A message-passing in-
terface standard version 2.2, September 2009.

[16] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Scal-
ing deterministic multithreading. In 2nd WoDet, March 2011.

[17] Steven J. Plimpton et al. MapReduce in MPI for large-scale graph
algorithms. Parallel Comput., 37(9):610–632, September 2011.

[18] Colby Ranger et al. Evaluating MapReduce for multi-core and
multiprocessor systems. In 13th HPCA, pages 13–24, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[19] Yu Zhang and Bryan Ford. A virtual memory foundation for scal-
able deterministic parallelism. In 2nd APSys, July 2011.

7

