
A Virtual Memory Foundation for
Scalable Deterministic Parallelism

Yu Zhang
University of Science and Technology of China

yuzhang@ustc.edu.cn

Bryan Ford
Yale University

bryan.ford@yale.edu

ABSTRACT

Recent deterministic execution environments promise efficient pro-
gram replay and bug reproduction, but their scalability is currently
limited by strictly hierarchical synchronization models or serialized
thread scheduling mechanisms. To address these issues, we intro-
duce a single-producer multiple-consumer (SPMC) virtual mem-
ory foundation for deterministic parallelism, which supports non-
hierarchical synchronization without serialized thread scheduling.
An extension to the Determinator microkernel, supporting SPMC
memory regions, offers threads and processes scalable “peer-to-
peer” communication while preserving the kernel’s existing guar-
antee of system-enforced determinism. DetMP, a deterministic user-
level message passing API modeled on MPI, illustrates one way
to build convenient application-level parallel programming abstrac-
tions atop the SPMC foundation. Preliminary results suggest that
DetMP atop SPMC may be realistic and useful, achieving near-
ideal speedup for parallel matrix multiplication, and good scaling
for IS, in all cases ensuring strict determinism.

Categories and Subject Descriptors

D.4.1 [ProcessManagement]: Multiprocessing/multiprogramming;
D.3.2 [Language Classifications]: Concurrent, distributed, and
parallel languages

General Terms

Design, Languages, Performance

Keywords

Deterministic Parallelism, Synchronization, Message Passing

1. INTRODUCTION
A parallel program is deterministic if, for a given input, every

execution of the program yields identical behavior and output. De-
terminism offers benefits for replay debugging [20], fault toler-
ance [10], and security [2, 14]. Current methods of executing par-
allel programs deterministically show promise [7, 11, 13, 22], but
often incur high costs, allow buggy or malicious applications to de-
feat repeatability [5], and often do not actually eliminate races from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys’11, July 11-12, 2011, Shanghai, China.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the programming model [3]. All of these approaches face scalabil-
ity challenges: Grace [8] and Determinator [5] support only hierar-
chical synchronization such as fork/join and barrier, for example,
while deterministic schedulers offering a full pthreads-compatible
API [7, 11, 13, 22] introduce inherently-serial thread coordination
mechanisms that make scaling difficult [23].

This paper extends the Determinator microkernel [5] with single-
producer multiple-consumer (SPMC) virtual memory, a novel op-
erating system foundation for non-hierarchical deterministic com-
munication and synchronization. Any process can create an SPMC
memory region, then transfer to other processes a single producer
mapping of the region, and/or any number of consumer mappings,
in order to set up virtual “pipes” among processes. A process at-
tempting to touch a page in a consumer mapping blocks until the
producer commits the corresponding page. Unlike classic Unix
pipes, SPMC allows the producer of a region to commit its con-
tents in any order at page granularity, and multiple consumers can
read the same pages, efficiently supporting multicast communica-
tion patterns common in parallel programming practice.

By conforming to the constraints of the Kahn process model [19],
SPMC preserves Determinator’s ability to enforce deterministic ex-
ecution of both multi-threaded and multi-process parallel compu-
tations. Because SPMC region transfer still occurs only via direct
parent/child interactions between processes and threads, SPMC also
preserves the conceptual simplicity, control, and composition power
of Determinator’s strictly hierarchical “nested process model” [17].
Once SPMC mappings are set up, however, processes can produce
and consume pages in these regions incrementally, allowing for ar-
bitrary peer-to-peer “dialog” short-circuiting the process hierarchy,
thereby removing Determinator’s prior scalability-limiting restric-
tion of requiring all inter-process communication to involve a com-
mon ancestor. Finally, by building on the virtual memory capabili-
ties of standard processors, SPMC offers performance characteris-
tics well-matched to modern shared memory multicore machines.

We envision using the SPMC foundation eventually to support
both shared memory (SM) and message passing (MP) parallel pro-
gramming models, as well as high-performance deterministic I/O.
As an initial case study, however, this paper introduces and fo-
cuses on DetMP, a deterministic message passing API modeled on
the well-known MPI framework [21]. Leveraging Determinator’s
SPMC foundation and the shared memory multicore hardware on
which it runs, DetMP offers applications some of the convenience
of a shared memory programming model by allowing DetMP pro-
grams to share read-only data efficiently without explicit commu-
nication. Cooperating application processes use an MPI-like API,
restricted to messaging operations with deterministic semantics, to
communicate mutable intermediate results.

As a preliminary evaluation of SPMC and DetMP, we examine
two well-known benchmarks, matrix multiplication (MM) and in-
teger sorting (IS). Comparing MM atop DetMP against MM on De-

terminator’s original hierarchical shared memory model (DetSM),
DetMP offers speedup close to ideal, scaling better than DetSM.
Comparing IS fromNPB-MPI [12] implemented atop DetMP against
IS for MPI on Linux, we find that IS-DetMP offers 110% of the
speedup of IS-LinuxMPI on 2 CPUs, and 97% and 78% of that of
IS-LinuxMPI on 4 and 8 CPUs, respectively, offering good scala-
bility while (unlike Linux) guaranteeing determinism.
This paper makes three main contributions. First, we introduce

SPMC, a virtual memory foundation for non-hierarchical deter-
ministic parallelism. Second, atop SPMC we develop DetMP, a
deterministic asynchronous message passing API fully compatible
with existing languages such as C, and similar to familiar message-
passing frameworks such as MPI. Third, our preliminary perfor-
mance results offer evidence that DetMP atop SPMC may be a re-
alistic and useful approach to deterministic parallel programming.
The remainder of the paper is structured as follows. Section 2

summarizes relevant background work, then Section 3 presents the
SPMC model and DetMP. Section 4 examines the prototype and
reports preliminary results, and Section 5 concludes.

2. BACKGROUND AND RELATEDWORK
As the most common forms of parallel programming models,

SM andMPmodels provide different synchronization concepts and
constructs, bringing different issues on determinism.

Deterministic Shared Memory Programming.
In the shared memory (SM)model, parallel tasks (usually threads)

share an address space to which they read and write concurrently.
Although fork/join and barrier are naturally deterministic synchro-
nization patterns among threads, synchronization mechanisms such
as locks and semaphores popularly used in controlling concurrent
access are semantically nondeterministic and invite heisenbugs [1].
Deterministic schedulers [7,8,11,13,22] can make bugs reprodu-

ciable, but allow misbehaved software to defeat repeatability, and
face scalability challenges [23]. DMP [13] and CoreDet [7] in-
terleave threads’ synchronization and memory access operations
on an artificial schedule. Because this deterministic schedule is
semantically arbitrary—not implied by anything in the program’s
logic—this approach makes race conditions reproducible but does
not eliminate them: slight input changes may still reveal schedule-
dependent bugs. TERN [11] attempts to address this problem of
instability across inputs by reusing past schedules for similar future
inputs. Kendo [22] provides deterministic guarantees for data-race-
free programs by ordering lock acquisitions and releases. Grace [8]
provides deterministic execution for C/C++ fork/join parallel pro-
grams using paged-based software transactional memory techniques.
New programming languages and type systems, such as Deter-

ministic Parallel Java [9], offer determinism but require program-
mers to rewrite legacy code and perhaps adopt unfamiliar concepts.
Rather than designing new languages or deterministic schedulers,

theWCmemory model [4] allows concurrent threads logically shar-
ing an address space but never seeing each others’ writes, except
when they synchronize explicitly and deterministically. The ex-
perimental Determinator OS [5] is one implementation of WC, but
previously supports only strictly hierarchical synchronization.

Deterministic Message Passing.
In the message passing (MP) model, parallel tasks (usually pro-

cesses) exchange data through by messages to one another, main-
taining private memories. Communications among processes are
non-hierarchical and may be asynchronous (in which the sender

does not wait for the receiver to be ready) or synchronous (requiring
the sender and receiver to wait for each other to transfer a message).

Although MP separates processes’ data spaces, it does not auto-
matically offer determinism: results can depend on order of mes-
sage reception. A message passing API following the constraints of
Kahn process networks [19] can offer deterministic execution, but
popular MP frameworks such as MPI [21] do not satisfy these con-
straints. Furthermore, the requirement to marshal and unmarshal
data into messages can be both less convenient to programmers and
less efficient, even if optimized for shared memory hardware [24].

SHIM [15,16] offers deterministic MP in the Kahn network model,
but requires adoption of a new programming language.

3. SPMCMODEL AND USAGE
This section describes the proposed SPMC model for determin-

istic parallelism, first covering the SPMC region primitive provided
by the Determinator kernel, then the user-level DetMP message
passing API that builds a familiar environment atop this primitive.

3.1 SPMC Region Kernel Primitive
Determinator initially constrained inter-process communication

to direct parent/child relationships [5]. To alleviate this limitation,
we extend Determinator’s virtual memory system with SPMC re-

gions, which allow a process P to establish communication di-
rectly among different children or descendents of P , eliminating
P as a scalability bottleneck in subsequent computation. The ker-
nel constrains SPMC regions to guarantee determinism despite in
the presence of this “peer-to-peer” communication. SPMC regions
thus form communication primitives analogous to Kahn process
networks [19], expressed in a virtual memory API.

Determinator originally allows only read-only sharing of phys-
ical memory, through the kernel’s copy-on-write (COW) mech-
anisms. SPMC generalizes the kernel with a restricted form of
read/write sharing, by distinguishing two types of memory map-
pings. A given physical page can have only one producer mapping
at a time, in one process’s address space. The page may have any
number of consumermappings in multiple processes, however. The
kernel enforces a protocol in which consumers have no access to a
page while the producer is writing to it, but once the producer ex-
plicitly fixes an SPMC page using a system call described below,
the producer loses write access while all consumers gain read ac-
cess. Figure 1 illustrates a simple scenario in which two processes
use two SPMC regions for bidirectional communication.

Figure 1: Processes can share several SPMC virtual memory

regions, each of which has only one producer mapping, and

any number of consumer mappings. Consumers can access an

SPMC page only after the producer explicitly fixes it.

Table 1: Extended options to the system calls in Determinator.
Put Get Option Description

X X Own Put/Get the ownership of all or part
of an SPMC region to/from child.

X Fix Fix all or part of an SPMC region.

To support SPMC regions, we add two optional arguments to De-
terminator’s existing Put/Get/Ret system calls, as shown in Table 1.
A user process P calls Get with the Zero and Own options to get
a Zero-filled SPMC region, and becomes the owner (producer) of
that region. P can transfer ownership of all or part of this SPMC re-
gion to any child, by invoking Put with the Own and Copy options;
the parent then becomes a consumer of the transferred region. P

can also hand out consumer mappings of the region to any number
of child processes, by calling Put with the Copy option.
As in Determinator’s current semantics, if at the time of a Get/Put

call the specified child is still executing, the kernel blocks the parent
until the child stops due to a Ret call, processor trap, or determin-
istic quantum expiration. This cooperative synchronization is nec-
essary for determinism, but occurs only at SPMC region “setup”
time. After region setup, the processes holding SPMC mappings
can interact and synchronize in a more fine-grained, peer-to-peer
fashion, unrestricted by the process hierarchy.
The kernel maps SPMC regions of the producer and all con-

sumers to the same physical memory pages, as shown in Figure
1. To enforce determinism, the kernel never permits consumers to
read a memory page while the producer is writing to it. Instead,
the kernel gives only the producer access to a given page, until the
producer explicitly fixes the page with a system call. The producer
then loses the ability to write to the page, but all consumers gain the
ability to read the page, and the page remains read-only for the rest
of its lifetime. If a consumer attempts to read an SPMC memory
page before the producer fixes it, the kernel blocks the consumer,
to be awoken later when the producer fixes that page. Each process
can unmap its SPMC regions when it does not need the mapped
pages anymore, and the kernel frees each underlying physical page
when all the mappings of that page are removed or replaced.
Once an SPMC region has been fixed, a process P can call Get

with the Own option to “regain” the ownership of the region. The
kernel then remaps the SPMC region of P to other newly-allocated
physical pages, then copies the content from the original physical
pages to the new ones, so as not to affect other consumers of the
original SPMC pages. P can then create new consumer mappings
of those pages by invoking Put with the Copy option, or transfer
ownership to a child by specifying the Own and Copy options.
With SPMC regions, the kernel thus allows inter-process syn-

chronization to “short-circuit” the process hierarchy while preserv-
ing a deterministic execution model. The copy-on-write mecha-
nism optimizes large copies to avoid physically copying read-only
pages. We intend this communication model to serve as a deter-
ministic foundation to support multiple deterministic parallel pro-
gramming models, as well as scalable deterministic I/O capabilities
in the future. For the present, however, we focus on using SPMC
for message-passing parallel applications, as described next.

3.2 DetMP User-Space Parallel API
DetMP is a user-space library built atop the kernel’s SPMC re-

gion primitive, offering a high-level channel abstraction for mes-
sage passing, and an MPI-like set of collective communication op-
erations.
A channel is a pipe-like abstraction implemented and managed

in user space by the DetMP library. Each channel has a globally-

unique ID, cino, and has a unique producer and one or more con-
sumers. The producer can asynchronously send several messages
to a given channel cino without waiting for a response, as follows,
where each message of size-byte length stored in a buffer buf:

chan_send(cino, buf, size).
A consumer can asynchronously receive whole or prefixes of mes-
sages in the order they were sent, storing the received data into
buf, by calling size = chan_recv(cino, buf). In the follow-
ing simple program fragment, the current thread creates two child
threads pch, cch and a channel cino, and let the two children
communicate directly via the channel.

spmc_init(); // initialize SPMC meta-data

int cino = chan_alloc(); // allocate a channel cino

thrd_args a={.cino = cino,...};// user-defined arguments

pch = thread_alloc(pID);//allocate a child for producing

cch = thread_alloc(cID);//allocate a child for consuming

chan_setprod(cino, pch, 0);//set pch the producer of cino

chan_setcons(cino, cch); //set cch the consumer of cino

thread_start(pch, prod, &a));//start pch to run prod(&a)

thread_start(cch, cons, &a));//start cch to run cons(&a)

DetMP implements each channel as a fixed-size SPMC region
holding a series of messages sent by the producer. Each message
occupies a contiguous range of pages in the region, and the pro-
ducer fixes one or more pages for each message sent. To support
asynchronous communication, DetMPmaintains channel meta-data
recording the status of active channels, such as IDs of the pro-
ducer/consumers, and offsets at which the producers and consumers
put/get the next message in the SPMC region.

Collective Communication.
DetMP provides a set of collective communication functions sim-

ilar to those in MPI, offering convenient high-level communication
among a group of threads. Unlike MPI, collective communication
functions in DetMP explicitly specify the relevant channels explic-
itly. A group of n threads, represented as a thread pool, consists of
a master thread and its (n− 1) child threads.

DetMP implements various MPI-like collective communication
operations atop the SPMC primitive. Assuming a group with three
threads, G={T0,T1,T2}, Figure 2 shows how these functions map
to basic channel send/receive operations on channels.

Barrier: At a barrier, each DetMP child thread makes a Ret
system call to stop and wait for the master. The master makes (n−

1) Get system calls to synchronize with each child, after which the
master restarts all children to proceed past the barrier.

Broadcast: The root thread T0 broadcasts to all threads of a
group via a root-to-all (1 : (n− 1)) channel c, as shown in Figure
2(a), where T0 broadcasts message 1 to T1 and T2 via channel c.

Scatter: The root thread T0 scatters data to all threads in a
group. For n threads, the function needs (n−1) root-to-thread(1:1)
channels. The root thread sends each item to its corresponding
thread in turn (except the root thread itself) on the appropriate chan-
nel. In Figure 2(b), T0 sends message 2 to T1 via channel c1 and
message 3 to T2 via c2, leaving message 1 for itself.

Gather: This function is the reverse of the scatter, which gathers
data from all threads to the root thread. For n threads, the operation
needs (n− 1) thread-to-root(1:1) channels; each thread except the
root sends a message to the root via the appropriate channel. In Fig-
ure 2(c), T0 receives 2 from T1 and 3 from T2 in turn via channels
c1 and c2, respectively, gathering all messages in its buffer.

Reduce: This function combines data items sent by each thread
using a specified reduction operation, such as sum, maximum, min-
imum, product, into the root thread’s reduction buffer. The function

Figure 2: Mapping of collective communication operations to SPMC channel send/recv pairs

needs (n−1) thread-to-root(1:1) channels for n threads. In Figure
2(d), T0 first initializes the buffer as 1, then receives 2 from T1 and
executes sum with 1, then receives 3 from T2 and executes sum,
finally getting the reduction result 6.
Allgather: This function is similar to the gather, but all threads

receive copies of all messages, not just the root thread. For n

threads, the function needs n thread-to-all(1:(n-1)) channels: each
thread sends a message and receives messages from other (n − 1)
threads in the specified order. In Figure 2(e), all threads get the
gathering result containing a sequence of 1, 2 and 3.
Allreduce: This function combines the data sent by each thread

using a reduction operation, and all threads receive the result. DetMP
implements this by combining reduce and broadcast: in Figure
2(f), the three threads first call reduce to let the root T0 get the
reduced result 6, then T0 broadcasts 6 to the others via channel c0.
All-to-all: This is an extension of allgather, where each thread

sends distinct data to each receiver. The j−th block sent from
thread i is placed in the i−th block of thread j’s receive buffer.
For simplicity, as shown in Figure 2(g), each thread first broadcasts
all blocks in its sending buffer to all others, and receives all other
threads’ blocks, then puts the relevant blocks in its receive buffer.

4. PROTOTYPE IMPLEMENTATION
We have extended Determinator with SPMC regions at kernel

level and DetMP at user level. Though early and incomplete, the
prototype is sufficient to explore the feasibility of our design.

4.1 Design
Determinator is written in C with small assembly fragments, cur-

rently runs on the 32-bit x86 architecture, and supports up to 1GB
of physical memory directly mapped into kernel space.
We modified the Determinator kernel’s virtual memory system

and system calls to support SPMC regions. The kernel uses x86
page-based address translation [18] to give each process an inde-
pendent user-level address space, enforcing inter-process protec-
tion and isolation. A classic x86 two-level page directory/table hi-
erarchy maps virtual to physical addresses in 4KB pages. Each

page table entry (PTE) points to physical memory page. We use an
available PTE bit to record whether a mapping is to an SPMC page.
The kernel sets this bit when creating an SPMC region via the Get
system call, and clears this bit at a producer’s Fix request.

At user level, we reserve an address range for channel meta-data
and channel internal nodes or inodes. For simplicity each active
channel inode occupies a 4MB SPMC region. To support mes-
sages with different sizes, a message in an inode consists of its real
length and its content. Messages in an inode are page-aligned so
as to leverage the kernel’s copy-on-write optimizations. To keep
meta-data consistent across processes, we separate the creation and
execution of a user process as in Java, and let a parent process copy
or transfer the consuming/producing right of an SPMC region to a
child between the creation and execution stages of the child, as in
the program fragment in Section 3.2.

We provide each process a private heap for dynamic memory
allocation (malloc) in applications.

4.2 Preliminary Results
We first compared DetMP with Determinator’s original shared

memory programmingmodel (DetSM) usingmatmult (MM), which
multiplies 1024-by-1024 matrices. Both implementations divide
work in the same way and use a master/slave coordination model.
In MM-DetMP, the master uses channels to communicate with each
child sending the task and receiving the result. We divide total exe-
cution time into computation (CP), communication (CM), and ver-

ification. In MM-DetSM, the master uses copy at the fork stage to
transfer a task to a child, and merge at the join stage to collect the
result from a child. We split total running time into computation,
merging (MG), and verification. We omit verification time as it
represents a negligible percentage of the total.

Figure 3(a) shows each version’s speedup (SP) relative to single-
CPU execution on the extended Determinator ran under QEMU [6]
on a 48 core, 1.7GHz AMD Opteron PC. Table 2(a) lists the spe-
cific statistics, including time percentages of computation, commu-
nication and merging occupied by each thread on average, and the
specific speedup and speedup ratio. MM-DetMP scales better than

Figure 3: Parallel speedup over its own single-CPU perfor-

mance on various benchmarks.

Table 2: Scalability and time distribution comparison.

(a) MM-DetMP vs. MM-DetSM.
CPUs DetMP DetSM DetMP-SP/

CP CM SP CP MG SP DetSM-SP

1 99.9% 0.0% 1 100.0% 0% 1 1
2 99.6% 0.3% 2.09 98.7% 1.3% 1.89 1.11
4 99.2% 0.5% 4.19 97.0% 2.9% 3.67 1.14
8 98.9% 0.8% 7.86 93.6% 6.4% 6.14 1.28

16 98.4% 1.3% 15.21 87.5% 12.5% 7.23 2.1

(b)IS-DetMP vs. IS-LinuxMPI.
CPUs DetMP LinuxMPI DetMP-SP/

CP CM SP CP CM SP LinuxMPI-SP

1 92.3% 7.5% 1 92.6% 7.3% 1 1
2 73.0% 26.8% 1.93 41.6% 57.6% 1.75 1.1
4 67.6% 32.0% 3.33 30.1% 69.5% 3.45 0.97
8 48.3% 51.6% 4.57 24.2% 75.3% 5.89 0.78

MM-DetSM, and achieves close to ideal scalability. The main rea-
son is that merging in MM-DetSM occupies more time percentage
than communication in MM-DetMP with increasing thread count,
as shown in Table 2(a).
We also compared DetMP with Linux MPI by porting the Inte-

ger Sort (IS) benchmark from NPB3.3-MPI [12] to DetMP. IS is a
bucket sort, where the number of keys ranked, number of proces-
sors used, and number of buckets employed are all powers of two.
Communication costs are dominated by an Alltoallv operation.
Figure 3(b) shows the speedup of IS-DetMP running on the ex-

tended Determinator, and IS-LinuxMPI running on Linux, relative
to the single-CPU performance of each. Table 2(b) lists specific
measurements of time distribution, speedup and speedup ratio. IS-
LinuxMPI ran on Ubuntu 10.10 with MPICH2, and both Ubuntu
and Determinator were run in the same QEMU environment on the
above 48-core PC. We show only results with up to 8 CPUs because
when running under QEMU, Ubuntu uses at most 8 CPUs regard-
less of the number of CPUs specified to QEMU. Speedup of IS-
DetMP is lower than that of IS-LinuxMPI on 4 and 8 CPUs (which
are 97% and 78% of IS-LinuxMPI’s, respectively), but it still scales
well and, unlike Linux, guarantees determinism. We also see that
the communication in IS-DetMP takes a smaller time percentage
than in IS-LinuxMPI with an increasing number of thread.

5. CONCLUSION
We believe that SPMC offers a promising virtual memory foun-

dation for implementing scalable, deterministic, and convenient
parallel programming models, for today’s and tomorrow’s mas-
sively multicore processors. The kernel’s SPMC primitive offers
non-hierarchical inter-process communication and synchronization

while ensuring system-enforced determinism. DetMP has shown
good scalability on the benchmarks evaluated so far. In the future
we expect to explore more efficient channels and other parallel pro-
gramming models atop SPMC.

Acknowledgments.
This research was supported by China’s Fundamental Research

Funds for the Central Universities, and by the U.S. National Sci-
ence Foundation under grant CNS-1017206.

6. REFERENCES
[1] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data

races. In VVEIS, pages 82–93, April 2003.

[2] Amittai Aviram et al. Determinating timing channels in compute
clouds. In CCSW, October 2010.

[3] Amittai Aviram and Bryan Ford. Deterministic OpenMP for race-free
parallelism. In 3rd HotPar, May 2011.

[4] Amittai Aviram, Bryan Ford, and Yu Zhang. Workspace Consistency:
A programming model for shared memory parallelism. In 2nd
WoDet, March 2011.

[5] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford.
Determinator: OS support for efficient deterministic parallelism. In
9th OSDI, October 2010.

[6] Fabrice Bellard. QEMU, a fast and portable dynamic translator, April
2005.

[7] Tom Bergan et al. CoreDet: A compiler and runtime system for
deterministic multithreaded execution. In 15th ASPLOS, March 2010.

[8] Emery D. Berger et al. Grace: Safe multithreaded programming for
C/C++. In OOPSLA, October 2009.

[9] Robert L. Bocchino et al. A type and effect system for deterministic
parallel Java. In OOPSLA, October 2009.

[10] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In 3rd OSDI, pages 173–186, February 1999.

[11] Heming Cui, Jingyue Wu, and Junfeng Yang. Stable deterministic
multithreading through schedule memoization. In 9th OSDI, October
2010.

[12] Rob F. Van der Wijingaart. NAS parallel benchmarks version 2.4.
Technical Report NAS-02-007, NASA Ames Research Center,
October 2002.

[13] Joseph Devietti et al. DMP: Deterministic shared memory
multiprocessing. In 14th ASPLOS, March 2009.

[14] George W. Dunlap et al. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In 5th OSDI, December 2002.

[15] Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic
model for heterogeneous embedded systems. Transactions on VLSI
Systems, 14(8):854–867, August 2006.

[16] Stephen A. Edwards, Nalini Vasudevan, and Olivier Tardieu.
Programming shared memory multiprocessors with deterministic
message-passing concurrency: Compiling SHIM to Pthreads. In
DATE, March 2008.

[17] Bryan Ford et al. Microkernels meet recursive virtual machines. In
2nd OSDI, pages 137–151, 1996.

[18] Intel Corporation. IA-32 Intel architecture software developer’s
manual, June 2005.

[19] Gilles Kahn. The semantics of a simple language for parallel
programming. In Information Processing, pages 471–475,
Amsterdam, Netherlands, 1974. North-Holland.

[20] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging
operating systems with time-traveling virtual machines. In USENIX,
pages 1–15, April 2005.

[21] Message Passing Interface Forum. MPI: A message-passing interface
standard version 2.2, September 2009.

[22] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In 14th ASPLOS,
March 2009.

[23] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Scaling
deterministic multithreading. In 2nd WoDet, March 2011.

[24] Angela C. Sodan. Message-passing and shared-data programming
models – wish vs. reality. In 19th HPCA, May 2005.

