Minion: An All-Terrain Packet Packhorse to Jump-Start Stalled Internet Transports

Jana Iyengar*, Bryan Ford* Dishant Ailawadi*, Syed Obaid Amin*, Michael F. Nowlan*, Nabin Tiwari*, Jeffrey Wise*

*Franklin and Marshall College

+Yale University

Transports come and transports go ...

SCTP

- multistreaming, message boundaries, multihoming, partial reliability, unordered delivery
- RFCs 4960, 3257, 3309, 3436, 3554, 3758, 3883 ...
- NAT behavior: draft-stewart-behave-sctpnat

DCCP

- Unreliable, congestion-controlled, datagram service
- RFCs 4336, 4340, 4341, 4342, 5238, 5634, ...
- NAT behavior: RFC 5597

... but the Internet remains loyal!

- TCP and/or UDP get through all middleboxes
 - UDP does not get through all middleboxes, but TCP does
 - (see paper for more on why UDP is insufficient)

- Other transports do not get through
 - SCTP and DCCP not supported by middleboxes
 - Practically impossible to get support for any new transport

How deep does this loyalty run?

- Network Address Translators (NATs)
 - Cheap and ubiquitous, entrenched in the network
- Firewalls
 - Rules based on TCP/UDP port numbers; possibly DPI
- Performance Enhancing Proxies (PEPs)
 - Transparently used for improving TCP performance

A taxonomy of transport functions

Functional Components in Transport Layer

Middleboxes in the network and transport functions on which they interpose

Deployment Impossibility-Cycles

What have we done so far?

- "NATs are evil. We won't care about them."
- "It will all change with IPv6."
- "Don't design around middleboxes, that will only encourage them!"

Denial

- "Why build a new transport?? It won't get deployed anyways."
 → Depression*

^{*}Kübler-Ross model: Five stages of grief

The final stage: Acceptance

- Design assumptions for new transport services:
 - New transport services should require modifications to only endhosts
 - Middleboxes are here to stay
- Consequences:
 - New end-to-end services should not require changes to middleboxes.
 - New end-to-end services must use protocols that appear as legacy protocols on the wire.

• Eg: MPTCP

The Minion Suite

- Uses legacy protocols ...
 - TCP, UDP, SSL
- ... as a substrate ...
 - turn legacy protocols into minions that offer an unordered datagram service
- · ... for building new services that apps want
 - multistreaming, message boundaries, unordered delivery, optional congestion control
 - (working on: stream-level receiver-side flow control, multihoming and multipath, partial reliability)

What's in the Minion Suite?

- Reduce legacy protocols to endpoint- and flow-layer minions on which middleboxes can interpose
- Build more sophisticated services on top of minions

TCP Minion

- Retain TCP protocol semantics on the wire
 - Connection-oriented → setup/teardown preserved
 - Fully reliable → retransmissions
 - Byte-stream → re-segmentation in network tolerated

- Provide datagram service to app/semantic layer
 - embed upper layer messages in byte-stream
 - extract and deliver messages at receiver from bytestream without regard to order (COBS encoding)
 - (cannot forgo TCP retransmissions → reliable datagram service)

TCP minion in operation

COBS encoding

- Size-preserving encoding that eliminates all occurrences of delimiter byte
 - Max overhead of 0.4% (5 bytes for 1250-byte msg)
 - Delimiter byte then inserted between messages
 - Receiver extracts messages, decodes, delivers up
- We make one modification
 - We insert delimiter byte both before and after msg
 - Increases max overhead to 0.8%
 - To deal with common cases for apps
 - App sends only one message (eg: HTTP GET req)
 - Each app msg gets encap'd in its own TCP segment

App messages with TCP (TLV encoding) vs. TCP-minion

Stacking new services

Semantic SCTP:

 message boundaries, multistreaming, unordered delivery, multihoming, multipath, (partial reliability)

Semantic DCCP:

- TCP-minion service is exactly the same as DCCP with TCP-like congestion control (CCID-2)
- negotiate CC on top of TCP-minion, and change CC algo used in kernel during runtime

Semantic SST:

- receiver-side per-stream flow control
- stream prioritization

SSL Minion

- SSL-minion protects end-to-end signaling and data,
 - appears as SSL on the wire, and
 - provides a reliable datagram service
- App messages are broken into SSL records at sender, and authentication code (MAC) is appended
- Receiver uses SSL's basic record header as a "weak" recognizer of a record delimiter
 - record authentication successful → record delimiter accurate!

UDP Minion

- Provides UDP encap of new transport
 - Similar to "GUT" proposal
 - Importantly, contains accurate app endpoint information: UDP source/dest port numbers are the ports that apps are bound to.

Our implementation of the minions

- Some inside Linux kernel, the rest in userspace libraries
- Added SO_UNORDERED sockopt to SOCK_STREAM
 - subsequent read()s results in a contiguous byteblock being returned, without regard to order
 - TCP sequence number returned with byteblock
 - This minor change is the only one required in-kernel
- Userspace library for rest of TCP- and SSL-minion
 - reassembles byteblocks, extracts message, decodes, and delivers up
 - can ship as part of apps

In Conclusion

- TCP, SSL, UDP work on the Internet
 - mature, performant implementations
 - workhorses of the Internet

- We can implement new services by modifying ends and retaining on-thewire protocols
 - Most mods deployable with apps
 - Turn workhorses into packhorses!

