

Minion:
An All-Terrain Packet Packhorse

to Jump-Start Stalled Internet Transports

Jana Iyengar*, Bryan Ford+

Dishant Ailawadi+, Syed Obaid Amin*,
Michael F. Nowlan+, Nabin Tiwari*, Jeffrey Wise*

 *Franklin and Marshall College +Yale University

Transports come and transports go ...

● SCTP
— multistreaming, message boundaries, multihoming,

partial reliability, unordered delivery
— RFCs 4960, 3257, 3309, 3436, 3554, 3758, 3883 …
— NAT behavior: draft-stewart-behave-sctpnat

● DCCP
— Unreliable, congestion-controlled, datagram service
— RFCs 4336, 4340, 4341, 4342, 5238, 5634, …
— NAT behavior: RFC 5597

… but the Internet remains loyal!

● TCP and/or UDP get through all middleboxes
— UDP does not get through all middleboxes,

but TCP does
— (see paper for more on why UDP is insufficient)

● Other transports do not get through
— SCTP and DCCP not supported by middleboxes
— Practically impossible to get support for any new

transport

How deep does this loyalty run?

● Network Address Translators (NATs)

— Cheap and ubiquitous, entrenched in the network
● Firewalls

— Rules based on TCP/UDP port numbers; possibly DPI
● Performance Enhancing Proxies (PEPs)

— Transparently used for improving TCP performance

A taxonomy of transport functions

Network Layer

Endpoint Layer
(endpoint identification:

port numbers)

Flow Layer
(congestion control)

Application Layer

Semantic Layer
(services offered to app:
reliability, ordering, etc.)

Functional
Components in
Transport Layer

(optional) Isolation Layer
(security)

NATs,
Firewalls

Performance
Enhancing

Proxies
(PEPs)

Traffic
Normalizers

Corporate
Firewalls

Middleboxes in the network and
transport functions on which they

interpose

Deployment Impossibility-Cycles

Middlebox support
for new transport

Market pressure
through user demand

Apps using new
transport

Performant
implementations for

popular OSes

What have we done so far?

● “NATs are evil. We won't care about them.”
● “It will all change with IPv6.”
● “Don't design around middleboxes,

 that will only encourage them!”
● “Alright, we'll specify how middleboxes

ought to behave with different
protocols. But they still have to behave.”

● “Why build a new transport?? It won't get
deployed anyways.”

Denial

Anger

Bargaining

Depression*

*Kübler-Ross model: Five stages of grief

The final stage: Acceptance

● Design assumptions for new transport services:
— New transport services should require modifications

to only endhosts
— Middleboxes are here to stay

● Consequences:
— New end-to-end services should not require

changes to middleboxes.
— New end-to-end services must use protocols that

appear as legacy protocols on the wire.

● Eg: MPTCP

The Minion Suite

● Uses legacy protocols …
— TCP, UDP, SSL

● … as a substrate …
— turn legacy protocols into minions that offer an

unordered datagram service

● … for building new services that apps want
— multistreaming, message boundaries, unordered

delivery, optional congestion control
— (working on: stream-level receiver-side flow control,

multihoming and multipath, partial reliability)

What's in the Minion Suite?

● Reduce legacy protocols to endpoint- and flow-layer
minions on which middleboxes can interpose

● Build more sophisticated services on top of minions

Network Layer

Endpoint Layer
(endpoint identification)

Flow Layer
(congestion control)

Application Layer

Semantic Layer
(services to app)

Isolation Layer
(security)

IPv4, IPv6

TCP
minion

DTLS (optional)

UDP
minion

Semantic SCTP, Semantic DCCP, Semantic SST,
or any other new transport deployed with an application

SSL
minion

TCP minion
(sans CC) … sans CC

SSL
minion …

TCP Minion

● Retain TCP protocol semantics on the wire
— Connection-oriented → setup/teardown preserved
— Fully reliable → retransmissions
— Byte-stream → re-segmentation in network tolerated

● Provide datagram service to app/semantic layer
— embed upper layer messages in byte-stream
— extract and deliver messages at receiver from byte-

stream without regard to order (COBS encoding)
— (cannot forgo TCP retransmissions → reliable

datagram service)

TCP minion in operation

m1m2m3 m1m2m3m1'm2'm3' m1'm2'1m3' m2'2 m1'm2'm3'

At app
sender

At TCP-minion
sender

 On the wire
TCP segments

At TCP-minion
receiver

At app
receiver

 TCP
segment 1

 TCP
segment 2

App
messages

Encoded app
msgs

Encoded msgs
extracted from
received TCP

segments

Decoded app
msgs

m1m2m3 m3m1'm2'm3' m1'm2'1m3' m2'2 m3'

 TCP
segment 1

 TCP
segment 2

m2'2

COBS encoding
● Size-preserving encoding that eliminates all

occurrences of delimiter byte
— Max overhead of 0.4% (5 bytes for 1250-byte msg)
— Delimiter byte then inserted between messages
— Receiver extracts messages, decodes, delivers up

● We make one modification
— We insert delimiter byte both before and after msg

 Increases max overhead to 0.8%

— To deal with common cases for apps
 App sends only one message (eg: HTTP GET req)
 Each app msg gets encap'd in its own TCP segment

App messages with
TCP (TLV encoding) vs. TCP-minion

Time received at app (seconds)

0 0.2 0.4 0.6 0.8
0

20

40

60

A
pp

 M
e

ss
ag

e
 S

eq
u

en
ce

N

u
m

b
er

 (
11

95
-b

yt
e

 m
sg

s)

TCP

TCP-minion

Stacking new services

● Semantic SCTP:
— message boundaries, multistreaming, unordered

delivery, multihoming, multipath, (partial reliability)

● Semantic DCCP:
— TCP-minion service is exactly the same as DCCP

with TCP-like congestion control (CCID-2)
— negotiate CC on top of TCP-minion, and change CC

algo used in kernel during runtime

● Semantic SST:
— receiver-side per-stream flow control
— stream prioritization

SSL Minion

● SSL-minion protects end-to-end signaling and data,

— appears as SSL on the wire, and
— provides a reliable datagram service

● App messages are broken into SSL records at sender,
and authentication code (MAC) is appended

● Receiver uses SSL’s basic record header as a “weak”
recognizer of a record delimiter

— record authentication successful → record delimiter
accurate!

UDP Minion

● Provides UDP encap of new transport
— Similar to “GUT” proposal
— Importantly, contains accurate app endpoint

information: UDP source/dest port numbers are the
ports that apps are bound to.

Our implementation of the minions

● Some inside Linux kernel, the rest in userspace libraries

● Added SO_UNORDERED sockopt to SOCK_STREAM

— subsequent read()s results in a contiguous byteblock
being returned, without regard to order

— TCP sequence number returned with byteblock
— This minor change is the only one required in-kernel

● Userspace library for rest of TCP- and SSL-minion

— reassembles byteblocks, extracts message, decodes,
and delivers up

— can ship as part of apps

In Conclusion

● TCP, SSL, UDP work on the Internet

— mature, performant implementations
— workhorses of the Internet

● We can implement new services by
modifying ends and retaining on-the-
wire protocols

— Most mods deployable with apps
— Turn workhorses into packhorses!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

