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Abstract

Internet applications increasingly employ TCP not as
a stream abstraction, but as a substrate for application-
level transports, a use that converts TCP’s in-order se-
mantics from a convenience blessing to a performance
curse. As Internet evolution makes TCP’s use as a
substrate likely to grow, we offer Minion, an architec-
ture for backward-compatible out-of-order delivery atop
TCP and TLS. Small OS API extensions allow applica-
tions to manage TCP’s send buffer and to receive TCP
segments out-of-order. Atop these extensions, Minion
builds application-level protocols offering true unordered
datagram delivery, within streams preserving strict wire-
compatibility with unsecured or TLS-secured TCP con-
nections. Minion’s protocols can run on unmodified TCP
stacks, but benefit incrementally when either endpoint is
upgraded, for a backward-compatible deployment path.
Experiments suggest that Minion can noticeably improve
performance of applications such as conferencing, vir-
tual private networking, and web browsing, while incur-
ring minimal CPU or bandwidth costs.

1 Introduction
TCP [46] was originally designed to offer applications a
convenient, high-level communication abstraction with
semantics emulating Unix file I/O or pipes. As the
Internet has evolved, however, TCP’s original role of
offering an abstraction has gradually been supplanted
with a new role of providing a substrate for transport-
like, application-level protocols such as SSL/TLS [17],
ØMQ [3], SPDY [2], and WebSockets [52]. In this new
substrate role, TCP’s in-order delivery offers little value
since application libraries are equally capable of imple-
menting convenient abstractions. TCP’s strict in-order
delivery, however, prevents applications from controlling
the framing of their communications [14, 19], and incurs
a “latency tax” on content whose delivery must wait for
the retransmission of a single lost TCP segment.

Due to the difficulty of deploying new transports to-
day [20, 36, 41], applications rarely utilize new out-of-
order transports such as SCTP [45] and DCCP [28].
UDP [37] is a popular substrate, but is still not uni-
versally supported in the Internet, leading even delay-
sensitive applications such as the Skype telephony sys-
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tem [7] and Microsoft’s DirectAccess VPN [16], to fall
back on TCP despite its drawbacks.

Recognizing that TCP’s use as a substrate is likely
to continue and expand, we introduce Minion, a novel
architecture for efficient but backward-compatible un-
ordered delivery in TCP. Minion consists of uTCP,
a small OS extension adding basic unordered delivery
primitives to TCP, and two application-level protocols
implementing datagram-oriented delivery services that
function on either uTCP or unmodified TCP stacks.
uTCP addresses delays caused by TCP’s send and re-

ceive buffering. On the send side, uTCP gives the ap-
plication a controlled ability to insert data out-of-order
into TCP’s send queue, allowing fresh high-priority data
to bypass previously-queued low-priority data, for exam-
ple. On the receive side, uTCP enables the application to
receive out-of-order TCP segments immediately, with-
out delaying their delivery until retransmissions fill prior
holes. Designed for simplicity and deployability, these
extensions add less than 600 lines to Linux’s TCP stack.

Minion’s application-level protocols, uCOBS and
uTLS, build general datagram delivery services atop
uTCP or TCP. Key challenges these protocols address
are: (a) TCP offers no reliable out-of-band framing to
delimit datagrams in a TCP stream; (b) uTCP cannot
add out-of-band framing without changing TCP’s wire
protocol; and (c) common in-band TCP framing meth-
ods assume in-order processing. To make datagrams self-
delimiting in a TCP stream, uCOBS leverages Consistent
Overhead Byte Stuffing (COBS) [12] to encode applica-
tion datagrams with at most 0.4% expansion, while re-
serving a single byte value to delimit encoded datagrams.

Minion adapts the stream-oriented TLS [17] into a se-
cure datagram delivery service atop uTCP or TCP. To
avoid changing the TLS wire protocol, the uTLS receiver
heuristically “guesses” TLS record boundaries in stream
fragments received out-of-order, then leverages TLS’s
cryptographic MAC to confirm these guesses reliably.
By preserving strict wire-compatibility with TLS, uTLS
enables unordered delivery within streams indistinguish-
able in the network from HTTPS [39], for example.

Experiments with a prototype on Linux show sev-
eral benefits for applications using TCP. Minion can re-
duce application-perceived jitter of Voice-over-IP (VoIP)
streams atop TCP, and increase perceptible-quality met-
rics [32]. Virtual private networks (VPNs) that tunnel
IP traffic over SSL/TLS, such as OpenVPN [34] or Di-



rectAccess [16], can double the throughput of some tun-
neled TCP connections, by employing uTCP to priori-
tize and expedite tunneled ACKs. Web transports can
cut the time before a page begins to appear by up to half,
achieving the latency benefits of multistreaming trans-
ports [19, 31] while preserving the TCP substrate. Use
of uCOBS can incur up to 5× CPU load with respect to
raw TCP, due to COBS encoding, but for secure connec-
tions, uTLS incurs less than 7% CPU overhead (and no
bandwidth overhead) atop the baseline cost of TLS 1.1.

This paper’s primary contributions are: (a) the first
wire-compatible TCP extension we are aware of offer-
ing true out-of-order delivery; (b) an API allowing appli-
cations to prioritize TCP’s send queue; (c) a novel use
of COBS [12] for out-of-order framing atop TCP; (d)
an existence proof that out-of-order datagram delivery is
achievable from the unmodified, stream-based TLS wire
protocol; (e) a prototype and experiments demonstrating
Minion’s practicality and performance benefits.

Section 2 motivates Minion by discussing the evolu-
tion of TCP’s role in the Internet. Section 3 introduces
Minion’s high-level architecture, and Section 4 describes
its uTCP extensions. Section 5 presents uCOBS for non-
secure datagram delivery, and Section 6 details uTLS, a
secure analog. Section 7 discusses the current Minion
prototype, and Section 8 evaluates its performance ex-
perimentally. Section 9 summarizes related work, and
Section 10 concludes.

2 Motivating Minion
This section describes how TCP’s role in the network
has evolved from a communication abstraction to a com-
munication substrate, why its in-order delivery model
makes TCP a poor substrate, and why other OS-level
transports have failed to replace TCP in this role.

2.1 Rise of Application-Level Transports
The transport layer’s traditional role in a network stack
is to build high-level communication abstractions con-
venient to applications, atop the network layer’s basic
packet delivery service. TCP’s reliable, stream-oriented
design [46] exemplified this principle, by offering an
inter-host communication abstraction modeled on Unix
pipes, which were the standard intra-host communica-
tion abstraction at the time of TCP’s design. The Unix
tradition of implementing TCP in the OS kernel offered
further convenience, allowing much application code to
ignore the difference between an open disk file, an intra-
host pipe, or an inter-host TCP socket.

Instead of building directly atop traditional OS-level
transports such as TCP or UDP, however, today’s ap-
plications frequently introduce additional transport-like
protocol layers at user-level, typically implemented via
application-linked libraries. Examples include the ubiq-

Figure 1: Today’s “de facto transport layer” is effectively
split between OS and application code.

uitous SSL/TLS [17], media transports such as RTP [44],
and experimental multi-streaming transports such as
SST [19], SPDY [2], and ØMQ [3]. Applications in-
creasingly use HTTP or HTTPS over TCP as a sub-
strate [36]; this is also illustrated by the W3C’s Web-
Socket interface [52], which offers general bidirectional
communication between browser-based applications and
Web servers atop HTTP and HTTPS.

In this increasingly common design pattern, the
“transport layer” as a whole has in effect become a
stack of protocols straddling the OS/application bound-
ary. Figure 1 illustrates one example stack, representing
Google’s experimental Chromium browser, which inserts
SPDY for multi-streaming and TLS for security at appli-
cation level, atop the OS-level TCP.

One can debate whether a given application-level pro-
tocol fits some definition of “transport” functionality.
The important point, however, is that today’s applications
no longer need, or expect, the underlying OS to provide
“convenient” communication abstractions: the applica-
tion simply links in libraries, frameworks, or middleware
offering the abstractions it desires. What today’s appli-
cations need from the OS is not convenience, but an effi-
cient substrate atop which application-level libraries can
build the desired abstractions.

2.2 TCP’s Latency Tax
While TCP has proven to be a popular substrate for
application-level transports, using TCP in this role con-
verts its delivery model from a blessing into a curse.
Application-level transports are just as capable as the
kernel of sequencing and reassembling packets into a
logical data unit or “frame” [14]. By delaying any seg-
ment’s delivery to the application until all prior segments
are received and delivered, however, TCP imposes a “la-
tency tax” on all segments arriving within one round-trip
time (RTT) after any single lost segment.

This latency tax is a fundamental byproduct of TCP’s
in-order delivery model, and is irreducible, in that an
application-level transport cannot “claw back” the time a
potentially useful segment has wasted in TCP’s buffers.



The best the application can do is simply to expect higher
latencies to be common. A conferencing application can
use a longer jitter buffer, for example, at the cost of
increasing user-perceptible lag. Network hardware ad-
vances are unlikely to address this issue, since TCP’s la-
tency tax depends on RTT, which is lower-bounded by
the speed of light for long-distance communications.

2.3 Alternative OS-level Transports
All standardized OS-level transports since TCP, includ-
ing UDP [37], RDP [51], DCCP [28], and SCTP [45],
support out-of-order delivery. The Internet’s evolution
has created strong barriers against the widespread de-
ployment of new transports other than the original TCP
and UDP, however. These barriers are detailed else-
where [20,36,41], but we summarize two key issues here.

First, adding or enhancing a “native” transport built
atop IP involves modifying popular OSes, effectively in-
creasing the bar for widespread deployment and making
it more difficult to evolve transport functionality below
the red line representing the OS API in Figure 1. Second,
the Internet’s original “dumb network” design, in which
routers that “see” only up to the IP layer, has evolved into
a “smart network” in which pervasive middleboxes per-
form deep packet inspection and interposition in trans-
port and higher layers. Firewalls tend to block “anything
unfamiliar” for security reasons, and Network Address
Translators (NATs) rewrite the port number in the trans-
port header, making both incapable of allowing traffic
from a new transport without explicit support for that
transport. Any packet content not protected by end-to-
end security such as TLS—the yellow line in Figure 1—
has become “fair game” for middleboxes to inspect and
interpose on [38], making it more difficult to evolve
transport functionality anywhere below that line.

2.4 Why Not UDP?
As the only widely-supported transport with out-of-order
delivery, UDP offers a natural substrate for application-
level transports. Even applications otherwise well-suited
to UDP’s delivery model often favor TCP as a substrate,
however. A recent study found over 70% of streaming
media using TCP [23], and even latency-sensitive con-
ferencing applications such as Skype often use TCP [7].

Network middleboxes support UDP widely but not
universally. For this reason, latency-sensitive applica-
tions seeking maximal connectivity “in the wild” often
fall back to TCP when UDP connectivity fails. Skype [7]
and Microsoft’s DirectAccess VPN [16], for example,
support UDP but can masquerade as HTTP or HTTPS
streams atop TCP when required for connectivity.

TCP can offer performance advantages over UDP as
well. For applications requiring congestion control, an
OS-level implementation in TCP may be more timing-

Figure 2: Minion architecture

accurate than an application-level implementation in a
UDP-based protocol, because the OS kernel can avoid
the timing artifacts of system calls and process schedul-
ing [54]. Hardware TCP offload engines can optimize
common-case efficiency in end hosts [30], and perfor-
mance enhancing proxies can optimize TCP throughput
across diverse networks [11, 13]. Since middleboxes can
track TCP’s state machine, they impose much longer
idle timeouts on open TCP connections—nominally two
hours [22]—whereas UDP-based applications must send
keepalives every two minutes to keep an idle connection
open [5], draining power on mobile devices.

For applications, TCP versus UDP represents an “all-
or-nothing” choice on the spectrum of services applica-
tions need. Applications desiring some but not all of
TCP’s services, such as congestion control but unordered
delivery, must reimplement and tune all other services
atop UDP or suffer TCP’s performance penalties.

Without dismissing UDP’s usefulness as a truly “least-
common-denominator” substrate, we believe the fac-
tors above suggest that TCP will also remain a popu-
lar substrate—even for latency-sensitive applications that
can benefit from out-of-order delivery—and that a de-
ployable, backward-compatible workaround to TCP’s la-
tency tax can significantly benefit such applications.

3 Minion Architecture Overview
Minion is an architecture and protocol suite designed to
meet the needs of today’s applications for efficient un-
ordered delivery built atop either TCP or UDP. Minion
itself offers no high-level abstractions: its goal is to serve
applications and higher application-level transports, by
acting as a “packhorse” carrying raw datagrams as reli-
ably and efficiently as possible across today’s diverse and
change-averse Internet.

3.1 All-Terrain Unordered Delivery
Figure 2 illustrates Minion’s architecture. Applications
and higher application-level transports link in and use
Minion in the same way as they already use exist-
ing application-level transports such as DTLS [40], the
datagram-oriented analog of SSL/TLS [17]. In contrast



with DTLS’s goal of layering security atop datagram
transports such as UDP or DCCP, Minion’s goal is to
offer efficient datagram delivery atop any available OS-
level substrate, including TCP.

While many protocols embed datagrams or
application-level frames into TCP streams using
delimiting schemes, to our knowledge Minion is the first
application-level transport that, under suitable condi-
tions, offers true unordered delivery atop TCP. Minion
effectively offers relief from TCP’s latency tax: the loss
of one TCP segment in the network no longer prevents
datagrams embedded in subsequent TCP segments from
being delivered promptly to the application.

3.2 Minion Architecture Components
Minion consists of several application-level transport
protocols, together with a set of optional enhancements
to end hosts’ OS-level TCP implementations.

Minion’s enhanced OS-level TCP stack, which we call
uTCP (“unordered TCP”), includes sender- and receiver-
side API features supporting unordered delivery and pri-
oritization, detailed in Section 4. These enhancements
affect only the OS API through which application-level
transports such as Minion interact with the TCP stack,
and make no changes to TCP’s wire protocol.

Minion’s application-level protocol suite currently
consists of uCOBS, which implements unordered data-
gram delivery atop unmodified TCP or uTCP streams
using COBS encoding [12] as described in Section 5;
and uTLS, which adapts the traditionally stream-oriented
TLS [17] into a secure unordered datagram delivery ser-
vice atop TCP or uTCP. Minion also adds trivial shim
layers atop OS-level datagram transports, such as UDP
and DCCP, to give applications a consistent API for un-
ordered delivery across multiple OS-level transports.

Minion currently leaves to the application the deci-
sion of which protocol to use for a given connection:
e.g., uCOBS or uTLS atop TCP/uTCP, or OS-level UDP
or DCCP via Minion’s shims. We are developing an
experimental negotiation protocol to explore the pro-
tocol configuration space dynamically, optimizing pro-
tocol selection and configuration for the application’s
needs and the network’s constraints [21], but we de-
fer this enhancement to future work. Many applica-
tions already incorporate simple negotiation schemes,
however—e.g., attempting a UDP connection first and
falling back to TCP if that fails—and adapting these
mechanisms to engage Minion’s protocols according
to application-defined preferences and decision criteria
should be straightforward.

3.3 Compatibility and Deployability
Minion addresses the key barriers to transport evolu-
tion, outlined in Section 2.3, by creating a backward-

compatible, incrementally deployable substrate for new
application-layer transports desiring unordered delivery.
Minion’s deployability rests on the fact that it can, when
necessary, avoid relying on changes either “below the red
line” in the end hosts (the OS API in Figure 1), or “below
the yellow line” in the network (the end-to-end security
layer in Figure 1).

While Minion’s uCOBS and uTLS protocols offer
maximum performance benefits from out-of-order deliv-
ery when both endpoints include OS support for Min-
ion’s uTCP enhancements, uCOBS and uTLS still func-
tion and interoperate correctly even if neither endpoint
supports uTCP, and the application need not know or
care whether the underlying OS supports uTCP. If only
one endpoint OS supports uTCP, Minion still offers in-
cremental performance benefits, since uTCP’s sender-
side and receiver-side enhancements are independent.
A uCOBS or uTLS connection atop a mixed TCP/
uTCP endpoint-pair benefits from uTCP’s sender-side
enhancements for datagrams sent by the uTCP endpoint,
and the connection benefits from uTCP’s receiver-side
enhancements for datagrams arriving at the uTCP host.

Addressing the challenge of network-compatibility
with middleboxes that filter new OS-level transports and
sometimes UDP, Minion offers application-level trans-
ports a continuum of substrates representing different
tradeoffs between suitability to the application’s needs
and compatibility with the network. An application
can use unordered OS-level transports such as UDP,
DCCP [28], or SCTP [45], for paths on which they oper-
ate, but Minion offers an unordered delivery alternative
usable even when TCP is the only viable choice.

A final issue is compatibility with existing applica-
tions. Since most of Minion operates at application-level,
applications must be changed to use the Minion API. A
pair of application endpoints may also need to negoti-
ate whether to use Minion, or to run directly atop OS-
level transports for compatibility with earlier versions
of the application. This challenge is comparable to the
cost of adding TLS or DTLS support to an application,
and the popularity of application-level transports such as
TLS suggests that these costs are surmountable. Min-
ion’s application-level functionality might eventually be
merged into existing or future application-level trans-
ports and communication frameworks, making its ben-
efits available with few or no application changes.

4 uTCP: Unordered TCP
Minion enhances the OS’s TCP stack with API enhance-
ments supporting unordered delivery in both TCP’s send
and receive paths, enabling applications to reduce trans-
mission latency at both the sender- and receiver-side end
hosts when both endpoints support uTCP. Since uTCP
makes no changes to TCP’s wire protocol, two endpoints



need not “agree” on whether to use uTCP: one endpoint
gains latency benefits from uTCP even if the other end-
point does not support it. Further, an OS may choose in-
dependently whether to support the sender- and receiver-
side enhancements, and when available, applications can
activate them independently.

In this spirit of Section 2, uTCP does not seek to of-
fer “convenient” or “clean” unordered delivery abstrac-
tions directly at the OS API. Instead, uTCP’s design is
motivated by the goals of maintaining exact compatibil-
ity with TCP’s existing wire-visible protocol and behav-
ior, and facilitating deployability by minimizing the ex-
tent and complexity of changes to the OS’s TCP stack.
The design presented here is only one of many viable
approaches, with different tradeoffs, to supporting un-
ordered delivery in TCP. Section 4.3 briefly outlines a
few such alternatives.

We describe uTCP’s API enhancements in terms of
the BSD sockets API, although uTCP’s design contains
nothing inherently specific to this API.

4.1 Receiver-Side Enhancements
uTCP adds one new socket option affecting TCP’s
receive path, enabling applications to request imme-
diate delivery of TCP segments received out of or-
der. An application opens a TCP stream the usual
way, via connect() or accept(), and may use
this stream for conventional in-order communication
before enabling uTCP. Once the application is ready
to receive out-of-order data, it enables the new option
SO_UNORDERED via setsockopt(), which changes
TCP’s receive-side behavior in two ways.

First, whereas a conventional TCP stack delivers re-
ceived data to the application only when prior gaps in
the TCP sequence space are filled, the uTCP receiver
makes data segments available to the application imme-
diately upon receipt, skipping TCP’s usual reordering
queue. The application obtains this data via read()
as usual, but the first data byte returned by a read()
call may no longer be the one logically following the
last byte returned by the prior read() call, in the byte
stream transmitted by the sender. The data the uTCP
stack delivers to the application in successive read()
calls may skip forward and backward in the transmit-
ted byte stream, and uTCP may even deliver portions
of the transmitted stream multiple times. uTCP guar-
antees only that the data returned by one read() call
corresponds to some contiguous sequence of bytes in the
sender’s transmitted stream, and that barring connection
failure, uTCP will eventually deliver every byte of the
transmitted stream at least once.

Second, when servicing an application’s read() call,
the uTCP receiver prepends a short header to the returned
data, indicating the logical offset of the first returned byte

in the sender’s original byte stream. The uTCP stack
computes this logical offset simply by subtracting the
Initial Sequence Number (ISN) of the received stream
from the TCP sequence number of the segment being de-
livered. Using this metadata, the application can piece
together data segments from successive read() calls
into longer contiguous fragments of the transmitted byte
stream.

Figure 3 illustrates uTCP’s receive-side behavior, in a
simple scenario where three TCP segments arrive in suc-
cession: first an in-order segment, then an out-of-order
segment, and finally a segment filling the gap between
the first two. With uTCP, the application receives each
segment as soon as it arrives, along with the sequence
number information it needs to reconstruct a complete
internal view of whichever fragments of the TCP stream
have arrived.

The uTCP receiver retains in its receive buffer the TCP
headers of segments received and delivered out-of-order,
until its cumulative acknowledgment point moves past
these segments, and generates acknowledgments and se-
lective acknowledgments (SACKs) exactly as TCP nor-
mally would. The uTCP receiver does not increase its
advertised receive window when it delivers data to the
application out-of-order, so the advertised window tracks
the cumulative in-order delivery point exactly as in TCP.
In this fashion, uTCP maintains wire-visible behavior
identical to TCP while delivering segments to the appli-
cation out-of-order.

The uTCP receive path assumes the sender may be
an unmodified TCP, and TCP’s stream-oriented seman-
tics allow the sending TCP to segment the sending appli-
cation’s stream at arbitrary points—independent of the
boundaries of the sending application’s write() calls,
for example. Further, network middleboxes may silently
re-segment TCP streams, making segment boundaries
observed at the receiver differ from the sender’s original
transmissions [24]. An application using uTCP, there-
fore, must not assume anything about received segment
boundaries. This is a key technical challenge to using
uTCP reliably, and addressing this challenge is one func-
tion of uCOBS and uTLS, described later.

4.2 Sender-Side Enhancements
While uTCP’s receiver-side enhancements address the
“latency tax” on segments waiting in TCP’s reordering
buffer, TCP’s sender-side queue can also introduce la-
tency, as segments the application has already written to
a TCP socket—and hence “committed” to the network—
wait until TCP’s flow and congestion control allow their
transmission. Many applications can benefit from the
ability to “late-bind” their decision on what to send un-
til the last possible moment. An application-level multi-
streaming transport with prioritization, such as SST [19]



Figure 3: Delivery behavior of (a) standard TCP, and (b) uTCP, upon receipt of in-order and out-of-order segments.

or SPDY [2], would prefer high-priority packets not to
get “stuck” behind low-priority packets in TCP’s send
queue. In applications such as games and remote-access
protocols, where the receiver typically desires only the
freshest in a stream of real-time status updates, the sender
would prefer that new updates “squash” any prior up-
dates still in TCP’s send queue and not yet transmitted.

The Congestion Manager architecture [6] addressed
this desire to “late-bind” the application’s transmission
decisions, by introducing an upcall-based API in which
the OS performs no send buffering, but instead signals
the application whenever the application is permitted to
send. Upcalls represent a major change to conventional
sockets APIs, however, and introduce issues such as how
the OS should handle an application that fails to ser-
vice an upcall promptly, leaving its allocated transmis-
sion time-slot unfilled yet unavailable to competing ap-
plications waiting to send.

In the spirit of maximizing deployability, uTCP adopts
a more limited but less invasive design, by retaining
TCP’s send buffer but giving applications some con-
trol over it. After enabling uTCP’s new socket option
SO_UNORDEREDSEND, the OS expects any subsequent
write() to that socket to include a short header, con-
taining metadata that uTCP reads and strips before plac-
ing the remaining data on TCP’s send buffer. The uTCP
header contains an integer tag and a set of optional flags
controlling uTCP’s send-side behavior.

By default, uTCP interprets tags as priority levels. In-
stead of unconditionally placing the newly-written data
at the tail of the send queue as TCP normally would,
uTCP inserts the newly-written data into the send queue
just before any lower-priority data in the send queue and
not yet transmitted. The application thus avoids higher-

priority packets being delayed by lower-priority packets
enqueued earlier, while the OS avoids the complexity and
security challenges of an upcall API.

For strict TCP wire-compatibility, uTCP never inserts
new data into the send queue ahead of any previously-
written data that has ever been transmitted in whole or in
part: e.g., ahead of data from a prior application write al-
ready partly transmitted and awaiting acknowledgment.
If an application writes a large low-priority buffer, then
writes higher-priority data after transmission of the low-
priority data has begun, uTCP inserts the high-priority
data after the entire low-priority write and never in the
middle. This constraint enables the application to con-
trol the boundaries on which send buffer reordering is
permitted, independent of the current MTU and TCP seg-
mentation behavior.

A simple uTCP refinement, which we intend to ex-
plore in future work, is to include a squash flag in the
metadata header the application prepends to each write.
If set, while inserting the newly-written data in tag-
priority order, uTCP would also remove and discard any
data previously written with exactly the same tag, that
has not yet been transmitted in whole or in part. This re-
finement would enable update-oriented applications such
as games to avoid the bandwidth cost transmitting old up-
dates superseded by newer data.

4.3 Design Alternatives
uTCP pursues a conservative point in a large design
space, and many alternatives present interesting trade-
offs. Some alternatives include: disabling TCP conges-
tion control at the sender; assigning TCP sequence num-
bers at application write time instead of the time a seg-
ment is first transmitted; sending new data in retransmit-



ted segments; modifying the receiver to acknowledge un-
received sequence space gaps for unreliable service; in-
creasing the receive window to account for out-of-order
segments; and delivering data to the application exactly-
once instead of at-least-once. For space reasons we dis-
cuss these tradeoffs in more detail elsewhere [26]. A
common theme, however, is that most of these design
alternatives change TCP’s behavior in wire-visible ways,
which can trigger various unpredictable middlebox be-
haviors [24], making connectivity less reliable.

5 uCOBS: Simple Datagrams on TCP
Since uTCP’s design attempts to minimize OS changes,
its unordered delivery primitives do not directly offer ap-
plications a convenient, general-purpose datagram sub-
strate. Minion’s uCOBS protocol bridges this semantic
gap, building atop uTCP (or standard TCP) a lightweight
datagram delivery service comparable to UDP or DCCP.
This first section first introduces the challenge of delim-
iting datagrams, then presents uCOBS’ solution and dis-
cusses alternatives.

5.1 Self-Delimiting Datagrams for uTCP
Applications built on datagram substrates such as UDP
generally assume the underlying layer preserves data-
gram boundaries. If the network fragments a large
UDP datagram, the receiving host reassembles it be-
fore delivery to the application, and a correct UDP
never merges multiple datagrams, or datagram frag-
ments, into one delivery to the receiving application.
TCP’s stream-oriented semantics do not preserve any
application-relevant frame boundaries within a stream,
however. Both the TCP sender and network middleboxes
can and do coalesce TCP segments or re-segment TCP
streams in unpredictable ways [24]. Conventional TCP
applications, which send and receive TCP data in-order,
commonly address this issue by delimiting application-
level frames with some length-value encoding, enabling
the receiver to locate the next frame in the stream from
the previous frame’s position and header content.

Since uTCP’s receive path effectively just bypasses
TCP’s reordering buffer, delivering received segments to
the application as they arrive, a stream fragment received
out-of-order from uTCP may begin at any byte offset in
the stream, and not at a frame boundary meaningful to
the application. Since the receiver is by definition miss-
ing some data sent prior to this out-of-order segment, it
cannot rely on preceding stream content to compute the
next frame’s position.

Reliable use of uTCP, therefore, requires that frames
embedded in the TCP stream be self-delimiting: rec-
ognizable without knowledge of preceding or following
data. A simple solution is to make frames fixed-length,
so the receiver can compute the start of the next frame

from the stream offset uTCP provides with out-of-order
segments. uCOBS is intended to offer a general-purpose
datagram substrate, however, and many applications re-
quire support for variable-length frames.

If the application-level frames happen to be encoded
so as never to include some “reserved” byte value, such
as zero, then we could use that byte reserved value to
delimit frames within uTCP streams. Since we wish
uCOBS to support general-purpose delivery of data-
grams of variable length containing arbitrary byte values,
however, uCOBS must explicitly (re-)encode the appli-
cation’s datagrams in order to reserve some byte value to
serve as a delimiter.

Any scheme that encodes arbitrary byte streams into
strings utilizing fewer than 256 symbols will serve this
purpose, such as the ubiquitous base64 scheme, which
encodes byte streams into strings utilizing only 64 ASCII
symbols plus whitespace. Since base64 encodes three
bytes into four ASCII symbols, however, it expands en-
coded streams by a factor of 4/3, incurring a 33% band-
width overhead. Since uCOBS needs to reserve only one
byte value for delimiters, and not the large set of byte
values considered “unsafe” in E-mail or other text-based
message formats, base64 encoding is unnecessarily con-
servative for uCOBS’ purposes.

5.2 Operation of uCOBS
To encode application datagrams efficiently, uCOBS em-
ploys consistent-overhead byte stuffing, or COBS [12].
COBS is analogous to base64, except that it encodes
byte streams to reserve only one distinguished byte value
(e.g., zero), and utilizes the remaining 255 byte values in
the encoding. COBS could in effect be termed “base255”
encoding. By reserving only one byte value, COBS in-
curs an expansion ratio of at most 255/254, or 0.4%
bandwidth overhead.

Transmission: When an application sends a datagram,
uCOBS first COBS-encodes the datagram to remove all
zero bytes. uCOBS then prepends a zero byte to the en-
coded datagram, appends a second zero byte to the end,
and writes the encoded and delimited datagram to the
TCP socket. Since this sender-side encoding and trans-
mission process operates entirely at application level
within uCOBS, and does not rely on any OS-level ex-
tensions on the sending host, uCOBS operates even if
the sender-side OS does not support uTCP.

The application can assign priorities to datagrams it
submits to uCOBS, however, and if the sender’s OS does
support the uTCP extensions in Section 4.2, uCOBS
passes these priorities to the uTCP sender, enabling
higher-priority datagrams to pass lower-priority data-
grams already enqueued. Since uTCP respects appli-
cation write() boundaries while reordering the send
queue, uCOBS preserves its delimiting invariant simply



Figure 4: An example illustrating a uCOBS transfer

by writing each encoded datagram—with the leading and
trailing zero bytes—in a single write.

Reception: At stream creation time, uCOBS enables
uTCP’s receive-side extensions if available. If the
receive-side OS does not support uTCP, then uCOBS
simply falls back on the standard TCP API, receiving,
COBS-decoding, and delivering datagrams to the appli-
cation in the order they appear in the TCP sequence
space. (This may not be the application’s original send
order if the send-side OS supports uTCP.)

If the receive-side OS supports uTCP, then uCOBS
receives segments from uTCP in whatever order they
arrive, then fits them together using the metadata in
uTCP’s headers to form contiguous fragments of the
TCP stream. The arrival of a TCP segment can cause
uCOBS to create a new fragment, expand an existing
fragment at the beginning or end, or “fill a hole” be-
tween two fragments and merge them into one. The por-
tion of the TCP stream before the receiver’s cumulative-
acknowledgment point, containing no sequence holes,
uCOBS treats as one large “fragment.” uCOBS scans
the content of any new, expanded, or merged fragment
for properly delimited records not yet delivered to the
application. uCOBS identifies a record by the presence
of two marker bytes surrounding a contiguous sequence
of bytes containing no markers or holes. Once uCOBS
identifies a new record, it strips the delimiting markers,
decodes the COBS-encoded content to obtain the origi-
nal record data, and delivers the record to the application.

5.3 Why Two Markers Per Datagram?
For correctness alone, uCOBS need only prepend or ap-
pend a marker byte to each record—not both—but such a
design could reduce performance by eliminating oppor-
tunities for out-of-order delivery. Consider Scenario (a)
in Figure 4, in which an application sends three records.
uCOBS encodes these records and sends them via three
write() calls, which TCP in turn sends in three sep-
arate TCP segments. In this scenario, no middleboxes

re-segment the TCP stream in the network, but the mid-
dle segment is lost. If the uCOBS sender were only to
prepend a marker at the start of each record, the uCOBS
receiver could not deliver record 1 immediately on re-
ceipt, since it cannot tell if record 1 extends into the fol-
lowing “hole” in sequence space. Similarly, if the sender
were only to append a marker at the end of each record,
then uCOBS could not deliver segment 3 immediately on
receipt, since record 3 might extend backwards into the
preceding hole. By adding markers to both ends of each
record, uCOBS ensures that the receiver can deliver each
record as soon as all of its segments arrive.

These markers enable uCOBS to offer reliable out-of-
order delivery even if network middleboxes re-segment
the TCP stream. In Scenario (b) in Figure 4, for exam-
ple, uCOBS sends three records encoded into three TCP
segments as above, but a middlebox re-segments them
into two longer TCP segments, whose boundary splits
record 2 into two parts. If neither of these segments are
lost, then the uCOBS receiver can deliver record 1 im-
mediately upon receipt of the first TCP segment, and can
deliver records 2 and 3 upon receipt of the second seg-
ment. If the first segment is lost as shown in Scenario (c),
however, the uCOBS receiver cannot deliver the missing
record 1 or the partial record 2, but can still deliver record
3 as soon as the second TCP segment arrives.

6 uTLS: Secure Datagrams on TCP
While uCOBS offers out-of-order delivery wire-
compatible up to the TCP level, middleboxes often in-
spect and manipulate the content of TCP streams as
well [38]. All unencrypted network traffic today is, de
facto, “fair game” for middleboxes—and streams ex-
hibiting any “out of the ordinary” middlebox-visible be-
havior are likely to fail over some middleboxes [24]. An
application’s only way to protect “end-to-end” commu-
nication in practice, therefore, is via end-to-end encryp-
tion and authentication. But network-layer mechanisms
such as IPsec [27] face the same deployment challenges
as new secure transports [19], and remain confined to
the niche of corporate VPNs. Even VPNs are shifting
from IPsec toward HTTPS tunnels [16], the only form of
end-to-end encrypted connection almost universally sup-
ported on today’s Internet. A network administrator or
ISP might disable nearly any other port while claiming
to offer “Internet access,” but would be hard-pressed to
disable HTTPS, today’s foundation for E-commerce.

We could layer TLS atop uCOBS, but TLS decrypts
and delivers data only in-order, negating uTCP’s benefit.
We could also layer the datagram-oriented DTLS [40]
atop uCOBS, but the resulting (DTLS-encrypted then
COBS-encoded) wire format would be radically differ-
ent from TLS over TCP, and likely fail to traverse mid-
dleboxes expecting TLS, particularly on port 443.



The goal of uTLS, therefore, is to coax out-of-order
delivery from the existing TCP-oriented TLS wire for-
mat, producing an encrypted datagram substrate indis-
tinguishable on the wire from standard TLS connections
(except via analysis of “side-channels” such as packet
length and timing, which we do not address). Run on port
443, a uTLS stream is indistinguishable from HTTPS—
regardless of whether the application actually uses HTTP
headers, since the HTTP portion of HTTPS streams are
TLS-encrypted anyway. Deployed this way, uTLS ef-
fectively offers an end-to-end protected substrate in the
“HTTP as the new narrow waist” philosophy [36].

6.1 Design of uTLS
TLS [17] already breaks its communication into records,
encrypts and authenticates each record, and prepends a
header for transmission on the underlying TCP stream.
TLS was designed to decrypt records strictly in-order,
however, creating three challenges for uTLS:

• Locating record headers out-of-order. Since en-
crypted data may contain any byte sequence, there is no
reliable way to differentiate a TLS header from record
data in the TCP stream, as COBS encoding provides.

• Encryption state chaining. Some TLS ciphersuites
chain encryption state across records, making records
indecipherable until prior records are processed.

• Record numbers used in MAC computation. TLS
includes a record number, which increases by 1 for
each record, in computing the record’s MAC. But the
uTLS receiver may not know an out-of-order record’s
number: holes in TCP sequence space before the record
could contain an unknown number of prior records.

To locate records out-of-order, uTLS first scans a re-
ceived stream fragment for byte sequences that may rep-
resent the TLS 5-byte header: i.e., containing the correct
record type and version, and a plausible length. While
this scan may yield false positives, uTLS verifies the in-
ferred header by attempting to decrypt and authenticate
the record. If the cryptographic MAC check fails, in-
stead of aborting the connection as TLS normally would,
uTLS assumes a false positive and continues scanning.

Since TLS’s MAC is designed to prevent resourceful
adversaries from constructing a byte sequence the re-
ceiver could misinterpret as a record, and it is by defi-
nition at least as hard to find such a sequence “acciden-
tally” as to forge one maliciously, TLS security should
protect equally well against accidental false positives.
One exception is when TLS is using its “null cipher-
suite,” which performs no packet authentication. With
this ciphersuite, normally used only during initial key ne-
gotiation, uTLS disables out-of-order delivery to avoid
the risk of accepting and delivering false records.

The only obvious solution to the second challenge
above is to avoid ciphersuites that chain encryption state
across records. Most ciphersuites before TLS 1.1 chain
encryption state, unfortunately. Any stream cipher inher-
ently does so, such as the RC4 cipher used in early SSL
versions. Most recent ciphersuites use block ciphers in
CBC mode. CBC ciphers do not inherently depend on
chained encryption state, but do require an Initialization
Vector (IV) for each record. Until recently, TLS pro-
duced each record’s IV implicitly from the prior record’s
encryption state, making records interdependent.

To fix a security issue, however, TLS 1.1 block ciphers
use explicit IVs, which the sender generates indepen-
dently for each record and prepends to the record’s ci-
phertext. As a side-effect, TLS 1.1 block ciphers support
out-of-order decryption. Since TLS supports negotiation
of versions and ciphersuites, uTLS simply leverages this
process. An application can insist on TLS 1.1 with a
block cipher to ensure out-of-order delivery support, or
it can permit older ciphersuites to maximize interoper-
ability, at the risk of sacrificing out-of-order delivery.

The third challenge is the implicit “pseudo-header”
TLS uses in computing the MAC for each packet. This
pseudo-header includes a “sequence number” that TLS
increments once per record, rather than per byte as with
TCP sequence numbers. When uTLS identifies a possi-
ble TLS record in a TCP fragment received out-of-order,
the receiver knows only the byte-oriented TCP stream
offset, and not the TLS record number. Since records
are variable-length, unreceived holes prior to a record to
be authenticated may “hide” a few large records or many
smaller records, leaving the receiver uncertain of the cor-
rect record number for the MAC check.

To authenticate records out-of-order without modify-
ing the TLS ciphersuite, therefore, uTLS attempts to pre-
dict the record’s likely TLS record number, using heuris-
tics such as the average size of past records, and may try
several adjacent record numbers to find one for which the
MAC check succeeds. If uTLS fails to find a correct TLS
record number, it cannot deliver the record out-of-order,
but will still eventually deliver the record in-order.

The current uTLS supports only receiver-side un-
ordered delivery, and not the send-side uTCP enhance-
ments in Section 4.2, because send-side reordering com-
plicates record number prediction. A future enhance-
ment we intend to explore is for uTLS to prepend an ex-
plicit record number to application payloads before en-
cryption. Since encryption does not depend on record
number, the receiving uTLS can decrypt the record num-
ber for use in the MAC check, avoiding the need to pre-
dict record numbers and enabling send-side reordering.
Since the only wire-protocol change is protected by en-
cryption, the change would be invisible to middleboxes.
Preserving end-to-end backward compatibility may re-



quire a way to negotiate “under encryption” the use of
explicit record numbers, however.

7 Prototype Implementation
This section describes the current Minion prototype,
which implements uTCP in the Linux kernel, and imple-
ments uCOBS and uTLS in application-linked libraries.
The uTCP prototype is Linux-specific, but we expect the
API extensions it implements and the application-level
libraries to be portable.

The uTCP Receiver in Linux: The uTCP prototype
adds about 240 lines and modifies about 50 lines of
code in the Linux 2.6.34 kernel, to support the new
SO_UNORDERED socket option. This extension in-
volved two main changes. First, uTCP modifies the TCP
code that delivers segments to the application, to prepend
a 5-byte metadata header to the data returned from each
read() system call. This header consists of a 1-byte
flags field and a 4-byte TCP sequence number. One flag
bit is currently used, with which uTCP indicates whether
it is delivering data in-order or out-of-order. Second, if
TCP’s in-order queue is empty, uTCP’s read() path
checks and returns data from the out-of-order queue. To
minimize kernel changes, segments remain in the out-
of-order queue after delivery, so uTCP will eventually
deliver the same data again in-order.

The uTCP Sender in Linux: On the send path,
uTCP adds about 250 lines of kernel code and mod-
ifies about 20 in Linux 2.6.34, supporting a new
SO_UNORDEREDSEND socket option via two changes.

First, uTCP expects the application to prepend a 5-
byte header, containing a 1-byte flags field and a 4-byte
tag, to the data passed to each write(). The flags are
currently unused, and the tag indicates message priority.

Second, uTCP inserts the data from each write()
into the kernel’s send queue in priority order. Linux’s
TCP send queue is a simple FIFO that packs applica-
tion data into kernel buffers sized to the TCP connec-
tion’s Maximum Segment Size (MSS). When inserting
application messages non-sequentially, however, uTCP
must preserve application message boundaries in the
kernel. For simplicity, uTCP allocates kernel buffers
(skbuffs) so that each message sent via uTCP starts
a new skbuff, and may span several skbuffs, but no
skbuff contains data from multiple application writes.

Disabling Linux’s usual packing of MSS-sized
skbuffs can affect Linux’s congestion control, unfor-
tunately, which counts skbuffs sent instead of bytes.
Section 8.1 discusses the effects of this Linux-specific
issue, which a future version of uTCP will address.

The uCOBS Library: The uCOBS prototype is a
user-space library in C, amounting to ~700 lines of
code [15]. uCOBS presents simple cobs_sendmsg()

and cobs_recvmsg() interfaces enabling applica-
tions to send and receive COBS-encoded datagrams,
taking advantage of send-side prioritization and out-of-
order reception depending on the presence of send- and
receive-side OS support for uTCP, respectively.

A uTLS Prototype Based on OpenSSL: The uTLS
prototype builds on OpenSSL 1.0.0 [33], adding ~550
lines of code and modifying ~40 lines [15]. Applications
use OpenSSL’s normal API to create a TLS connection
atop a TCP socket, then set a new uTLS-specific socket
option to enable out-of-order, record-oriented delivery
on the socket. OpenSSL 1.0.0 unfortunately does not yet
support TLS 1.1, the first TLS version that uses explicit
Initialization Vectors (IVs), permitting out-of-order de-
cryption. For experimentation, therefore, the uTLS pro-
totype modifies OpenSSL’s TLS 1.0 ciphersuite to use
explicit IVs as in TLS 1.1. Since this change breaks
OpenSSL’s interoperability, our prototype is not suitable
for deployment. We are currently porting uTLS to the
next major OpenSSL release, which supports TLS 1.1.

8 Performance Evaluation
This section evaluates Minion via experiments designed
to approximate realistic application scenarios. All ex-
periments were run across three Intel PCs running Linux
2.6.34: between two machines representing end hosts,
a third machine interposes on the path and uses dum-
mynet [9] to emulate various network conditions. To
minimize well-known TCP delays fairly for both TCP
and uTCP, we enabled Linux’s “low latency” TCP code
path via the net.ipv4.tcp_low_latency sysctl,
and disabled the Nagle algorithm.

8.1 Bandwidth and CPU Costs
We first explore uTCP’s costs, with and without record
encoding and extraction via uCOBS and uTLS, for a
30MB bulk transfer on a path with 60ms RTT.

Raw uTCP: uTCP’s CPU costs at both the sender and
the receiver, without application-level processing, are al-
most identical to TCP’s CPU costs, across a range of loss
rates from 0% to 5% (figure omitted for space reasons).

Figure 5 shows bandwidth achieved by raw uTCP and
TCP, for different application write() sizes. When the
message size is a multiple of TCP’s Maximum Segment
Size (MSS)—at 1448 bytes (1 MSS) and 2896 bytes (2 x
MSS)—uTCP’s throughput is the same as TCP’s.

The disparity elsewhere is due to Linux’s congestion
control counting skbuffs instead of bytes, mentioned
earlier in Section 7. We partially address this issue by co-
alescing data into skbuffs where easily possible. More
specifically, we coalesce small messages when they fully
fit within MSS-sized skbuffs at the tail of the sender-
side socket buffer. This fix makes uTCP throughput sim-



 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000  2500  3000

Th
ro

ug
hp

ut
 (M

bp
s)

Application Message Size (in bytes)

TCP
uTCP

Figure 5: Throughput with different app message sizes.

ilar to TCP’s when the MSS is divisible by message
size—at 362 bytes ( 1

4 MSS) and 724 bytes ( 1
2 MSS).

Future versions of uTCP will fully address this Linux-
specific issue with changes either to uTCP or to Linux’s
congestion control.

Costs with uCOBS/uTLS: To measure these CPU
costs, we run a 30MB bulk transfer over a path with a
60ms RTT, for several loss rates.

Figure 6(a) shows CPU costs including application-
level encoding/decoding, atop standard TCP (“COBS”)
and atop uTCP (“uCOBS”), for several loss rates at both
sender and receiver. The lighter part of each bar repre-
sents user time and the darker part represents kernel time.
These results are normalized to the performance of raw
TCP, with no application-level encoding or decoding.

COBS encoding/decoding barely affects kernel CPU
use but incurs some application-level CPU cost. This
cost is partly due to the encoding itself, and partly be-
cause the libraries are not yet well-optimized.

Figure 6(b) shows the CPU costs of uTLS relative to
TLS. At the sender, the CPU costs are identical, since
there is nothing that uTLS does differently than TLS, and
since the CPU cost of using uTCP is practically the same
as with TCP. The user-space cost for the uTLS receiver
is generally higher than TLS, since the uTLS receiver
does more work in processing out-of-order frames than
the TLS receiver, but this cost remains within 7% of the
TLS receiver’s cost.

The bandwidth penalty of uCOBS encoding is barely
perceptible, under 1%. TLS’s bandwidth overhead, up to
10%, is due to TLS headers, IVs, and MACs; uTLS adds
no bandwidth overhead beyond standard TLS 1.1.

8.2 Conferencing Applications
We now examine a real-time Voice-over-IP (VoIP) sce-
nario. A test application uses the SPEEX codec [50] to
encode a WAV file using ultra-wideband mode (32kHz),
for a 256kbps average bit-rate, and transmit voice frames
at fixed 20ms intervals. Network bandwidth is 3Mbps
and RTT is 60ms, realistic for a home broadband connec-
tion. To generate losses more realistically representing
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Figure 6: CPU costs of using an application with TCP,
COBS, and uCOBS at different loss rates.
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network contention, we run a varying number of compet-
ing TCP file transfers, emulating concurrent web brows-
ing sessions or a BitTorrent download, for example.

This is a simplistic scenario for experimental pur-
poses. Real VoIP applications, which we intend to eval-
uate in future work, often determine bit-rate based on
network conditions. Real applications may also imple-
ment loss recovery mechanisms atop UDP, which may
improve perceived voice quality when using UDP.

Latency: Figure 7 shows a CDF of one-way per-frame
latency perceived by the receiving application, under
heavy contention from 4 competing TCP streams. All
three transports suffer major delays. 4% of UDP frames
do not arrive at all, since UDP does not retransmit. 95%
of frames sent with uCOBS over uTCP arrive within
200ms, compared to 80% of TCP frames.

Burst Losses: VoIP codecs such as SPEEX can inter-
polate across one or two missing frames, but are sensitive
to burst losses or delays, which yield user-perceptible
blackouts. An application’s susceptibility to blackouts
depends on its jitter buffer size: a larger buffer increases
the receiver’s tolerance of burst losses or delays, but also
increases effective round-trip delay, which can add user-
perceptible “lag” to all interactions.

The CDF in Figure 8 shows the prevalence of different
lengths of burst losses experienced by the receiver in a
typical VoIP call. A burst loss is a series of consecutive
voice frames that miss their designated playout time, due
either to loss or delay.

A 200ms jitter buffer of 3× the path RTT might seem
generous, but the ITU’s recommended maximum trans-
mission time of 400ms [4] allows for a larger buffer with
these network conditions. Now the differences between
uCOBS and TCP are quite pronounced, with 80% of
burst losses atop uCOBS being 3 or fewer packets, nearly
matching that of UDP. Meanwhile 40% of TCP’s bursts
are greater than 10 packets, producing highly-perceptible
1/5-second pauses.

Perceptual Audio Quality: To illustrate the impact
of unordered delivery on VoIP quality, we use Percep-
tual Evaluation of Speech Quality (PESQ) [32] to mea-
sure audio reproduction quality, by comparing the audio
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stream reproduced by SPEEX at the receiver against that
of an ideal run with no lost or delayed frames. We trans-
mit a 4-minute VoIP call using a jitter buffer of 200ms,
introducing 1 to 4 competing TCP streams progressively
at 1-minute intervals.

Figure 9 plots PESQ quality scores for 2-second slid-
ing time windows over a representative 4-minute call,
comparing transmission via uCOBS, TCP, and UDP.
The effect of network contention becomes apparent even
with only one competing stream, but unordered deliv-
ery makes this impact much smaller on uCOBS or UDP
than on TCP. uCOBS sometimes performs better than
UDP, in fact, when uTCP successfully retransmits a lost
segment within the jitter buffer’s time window, whereas
UDP never retransmits. (Some UDP applications em-
ploy application-level retransmission schemes [1], es-
pecially for control data.) Like TCP, uCOBS shows
greater volatility than UDP with higher contention, due
to TCP congestion control effects that uTCP preserves
(though congestion control can be disabled). Similarly,
the “back-off” of the competing streams enables the
transports to rebound after the initial contention of 4
competing streams.

8.3 Send-Side Prioritization
To test uTCP’s sender-side prioritization, we use a syn-
thetic application that continuously sends messages to
the receiver at network-limited rate, of which one in ev-
ery 100 messages are considered “high-priority.” Fig-
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ure 10 plots application-observed messages delay over
time, for high- and low-priority messages, atop TCP ver-
sus uTCP. As expected, high-priority messages consis-
tently observe much lower delays under uTCP because
they short-cut the TCP send queue. The next section ex-
plores a more realistic application for prioritization.

8.4 VPN Tunneling
Applications running atop TCP-based VPN tunnels often
encounter TCP-in-TCP effects [48]. The applications’
tunneled TCP flows assume they are running atop a best-
effort, packet-switched network as usual, but are in fact
running atop a reliable, in-order TCP-based tunnel. The
TCP tunnel affects the tunneled flows’ congestion con-
trol by increasing observed latency and RTT variance,
and masks losses: tunneled flows never see “lost” or “re-
ordered” TCP segments, only long-delayed ones. While
uTCP does not change TCP’s reliability or congestion
control, it offers tunneled flows lower delay and jitter,
and a more accurate view of packet losses.

To test Minion’s impact on TCP-in-TCP effects, we
made two changes to OpenVPN 2.1.4 [34]. First, we
modified OpenVPN to use uCOBS instead of TCP, en-
abling unordered delivery of tunneled IP packets. Sec-
ond, to reduce delay variance of tunneled TCP flows fur-
ther, the modified OpenVPN gives tunneled TCP ACKs
a higher priority than other packets.

The experiment uses a link with 3Mbps download and
0.5Mbps upload bandwidth, consistent with the median
speed of residential connections [53].

Figure 11 shows measured throughput of a single
download, with original and modified OpenVPN tunnels,
for a varying number of competing uploads within the
same tunnel. While using uTCP does not eliminate all
TCP-in-TCP effects, the reduced RTT and RTT-variance
noticeably improve performance.

To understand these performance improvements fur-
ther, we now measure total network utilization achieved
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by independently adding the two modifications—
unordered delivery at the receiving ends of the tunnel
(labeled uCOBS), and ACK prioritization at the send-
ing ends (labeled priACKs)—leading to four variants of
OpenVPN. Figure 12 shows total upload and download
throughputs obtained by the VPN tunnel in three differ-
ent contexts: one upload (labeled UL) within the tunnel,
one upload competing with three downloads within the
tunnel, and one download (labeled DL) in the tunnel.

With no competing flows, labeled UL Only and DL
Only in Figure 12, all four variants perform similarly.
With multiple competing downloads, out-of-order deliv-
ery improves download performance by a small amount,
but ACK prioritization greatly improves download per-
formance. Upload throughput suffers, however, as ACK
prioritization is added. This throughput degradation is
atrributable to the poor interaction between the small
write()s of ACK packets being sent through the tun-
nel and Linux’s skbuff-based congestion control de-
scribed in Section 8.1. Despite this degradation to up-
load throughput, the area under the curve—representing
total network utilization—remains highest with the fully
modified tunnel. In a future version of uTCP that fixes
this Linux-specific issue, we expect the upload through-
put to remain high even with ack-prioritization, and net-
work utilization to reflect uTCP’s benefits more clearly.

8.5 Multistreaming Web Transfers
To explore uTCP’s potential benefits for web brows-
ing, we built msTCP, a simple multistreaming protocol
providing multiple concurrent, ordered message streams
atop a single uTCP connection. While similar in purpose
to SPDY [2], to our knowledge msTCP is the first TCP-
based multistreaming protocol that offers the unordered
delivery benefits of non-TCP-based multistreaming pro-
tocols such as SCTP [45] and SST [19]. We omit a de-
tailed description of msTCP for space reasons, but its
design follows standard techniques.
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Figure 13: Pipelined HTTP/1.1 over a persistent TCP connection, vs. Parallel HTTP/1.0 over msTCP.

To evaluate msTCP, we compare the performance of
parallel HTTP/1.0-style object requests over msTCP,
against pipelined HTTP/1.1 requests on a persistent TCP
connection, under a trace-driven web workload. We use
a fragment of the UC Berkeley Home IP web client traces
from the Internet Traffic Archive [25], using the trace to
drive a series of web page downloads. Each page con-
sists of a “primary” request for the HTML, followed by
“secondary” requests for embedded objects such as im-
ages. The simulation pessimistically assumes that the
browser cannot begin requesting secondary objects un-
til it has downloaded the primary object completely, but
at this point it can request all secondary objects in par-
allel. The experimental setup uses a link with 1.5Mbps
bandwidth in each direction and with a 60ms RTT.

Figure 13 shows a scatter-plot of total page load time
in the top three graphs, and in the bottom three graphs,
average time to load the first byte of an object in each
page—the time at which the browser can potentially start
rendering the object. The dark curves show median
times, computed across buckets of web page sizes. As

the figure shows, msTCP does not affect total page load
times noticeably. msTCP shows much lower delay in
starting to load many objects, however, since msTCP
interleaves different objects’ chunks within the persistent
connection.

Figure 13 shows the end-to-end impact on web brows-
ing of msTCP’s application-level message chunking and
multiplexing in addition to the benefits of uTCP’s out-
of-order delivery. These latency savings, while not
solely due to uTCP, represent the potential savings when
web frameworks like SPDY [2] use uTCP, and make
HTTP/HTTPS more usable as a general purpose sub-
strate for deploying latency-sensitive applications [36].

8.6 Implementation Complexity
To evaluate the implementation complexity of uTCP
and the related application-level code, Table 1 summa-
rizes the source code changes uTCP makes to Linux’s
TCP stack in lines of code [15], the size of the stan-
dalone uCOBS library, and the changes uTLS makes to
OpenSSL’s libssl library. The SSL/TLS total does not



TCP uTCP DCCP SCTP
Kernel Code 12,982 565 (4.6%) 6,338 19,312

uCOBS SSL/TLS uTLS DTLS
User Code 732 31,359 586 (1.9%) 4,734

Table 1: Code size of uTCP prototype as a delta to
Linux’s TCP stack, the uCOBS library, and uTLS as a
delta to libssl from OpenSSL. Code sizes of “native”
out-of-order transports are included for comparison.

include OpenSSL’s libcrypt library, which libssl
requires but uTLS does not modify.

With only a 600-line change to the Linux kernel and
less than 1400 lines of user-space support code, uTCP
provides a delivery service comparable to Linux’s 6, 300-
line native DCCP stack, while providing greater network
compatibility. In user space, uTLS represents less than a
600-line change to the stream-oriented SSL/TLS proto-
col, contrasting with OpenSSL’s 4, 700-line implemen-
tation of DTLS, which runs only atop out-of-order trans-
ports such as UDP or DCCP.

9 Related Work

New transports for latency-sensitive apps: Brosh et
al. [8] model TCP latency, and identify the regions of op-
eration for latency-sensitive apps with TCP. While some
of the considerations apply, such as latency induced by
TCP congestion control, uTCP extends the working re-
gion for such apps by eliminating delays at the receiver.

DCCP [28, 29] provides an unreliable, unordered
datagram service with negotiable congestion control.
SCTP [45] provides unordered and partially-ordered de-
livery services to the application. Both DCCP and SCTP
face large deployment barriers on today’s Internet, how-
ever, and are thus not widely used.

New transports such as SST [19] and CUSP [47] run
atop UDP to increase deployability, and UDP tunneling
schemes have been proposed for standardized Internet
transports as well [35, 49]. Many Internet paths block
UDP traffic as well, however, as evidenced by the shift of
popular VoIP applications such as Skype [7] and VPNs
such as DirectAccess [16] toward tunneling atop TCP in-
stead of UDP, despite the performance disadvantages.

Message Framing over TCP: Protocols such as
HTTP [18], SIP [42], and iSCSI [43], can all benefit from
out-of-order delivery, but use TCP for legacy and net-
work compatibility reasons. All use simple type-length-
value (TLV) encodings, which do not directly support
out-of-order delivery even with uTCP, because they offer
no reliable way to distinguish a record header from data
in a TCP stream fragment. While COBS [12] represents
an attractive set of characteristics for framing records

to enable out-of-order delivery, other encodings such as
BABS [10] also represent viable alternatives.

10 Conclusion
For better or worse, TCP remains the most common
substrate for application-level protocols and frameworks,
many of which can benefit from unordered delivery.
Minion demonstrates that it is possible to obtain un-
ordered delivery from wire-compatible TCP and TLS
streams with surprisingly small changes to TCP stacks
and application-level code. Without discounting the
value of UDP and newer OS-level transports, Minion of-
fers a more conservative path toward the performance
benefits of unordered delivery, which we expect to be
useful to applications that use TCP for a variety of prag-
matic reasons.
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