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Abstract

Most compression algorithms used in storage systems

today are based on an increasingly outmoded sequen-

tial processing model. Systems wishing to decompress

blocks out-of-order or in parallel must reset the compres-

sor’s state before each block, reducing adaptiveness and

limiting compression ratios. To remedy this situation, we

present Non-Linear Compression, a novel compression

model enabling systems to impose an arbitrary partial

order on inter-block dependencies. Mutually unordered

blocks may be compressed and decompressed out-of-

order or in parallel, and a compressor can adaptively

compress each block based on all causally prior blocks.

This graph structure captures the system’s data depen-

dencies explicitly and completely, enabling the compres-

sor to adapt using long-lived state without the constraint

of sequential processing. Preliminary experiences with

a simple Huffman compressor suggest that non-linear

compression fits a diverse set of storage applications.

1 Introduction

Data compression [17] algorithms have improved over

the years [14, 26], and are now an integral part of stor-

age systems. Examples include data compression and

deduplication for virtual machines, snapshots, backups

and archivals [16,22] and remote access, synchronization

and version control [12,18,25,27]. Other application do-

mains such as audio/video storage and playback [2] and

network protocols [3, 8] use compression extensively.

Modern compression schemes are adaptive, and,

hence, inherently stateful. Most algorithms assume their

state evolution is linear: the compressor may use any in-

formation derived from bytes 1 through n to compress

byte n + 1; the decompressor must typically also pro-

cess bytes 1 through n before it can decode byte n + 1.

An application can reset the compressor’s state com-

pletely at application-defined block boundaries to make

blocks independently decompressible, but the compres-

sor is then unable to build or utilize any long-lived

state across block boundaries. Many modern applica-

tions, however, require parallel or out-of-order compres-

sion or decompression of limited-size blocks, such as:

versioned or deduplicating file systems that must sup-

port random block access [16, 22]; distributed revision

control systems that must compress and merge often

small deltas from independent sources [12, 18]; collab-

orative editing systems needing to compress and inter-

change many small but mutually-interacting document

“transforms” [9,21]; and network protocols desiring both

data/header compression [3, 8] and out-of-order deliv-

ery [11,15]. Even in storage applications for which large

blocks are suitable, linear compression can limit the sys-

tem’s ability to exploit multicore CPUs or new parallel

I/O devices [6] and media [24].

To address this significant constraint, we propose

a new Non-Linear Compressor (NLC) abstraction. It

structures the complete compression state as a Directed

Acyclic Graph (DAG) of individual state nodes. An NLC

state node supports three operations: forking a child

node, compressing a block of data, and merging with

another node. Forking copies compression state, while

merging joins two compression states into one. This

fork/merge model enables the application to express a

dependency graph structured as an arbitrary partial order,

thereby allowing the compression algorithm to build and

adapt using long-term state across blocks, while allow-

ing sibling nodes anywhere in the DAG to be processed

independently (Section 3.3).

We developed a proof-of-concept prototype imple-

menting this abstraction, which supports compression

using Adaptive Huffman coding. Our early experiences

indicate that NLC should be attractive to current and

emerging storage systems and architectures.

2 Motivation

We motivate NLC by exploring popular storage systems

currently using compression. The nature and require-

ments of these systems suggest they could benefit from a

non-linear model of compression.

2.1 Deduplicating File Systems

Deduplicating file systems identify redundant chunks

of data, replacing identical instances with a single

copy [22], and often delta-encoding similar, but not iden-

tical, blocks [16]. This delta-encoding produces small

compressed blocks (e.g.,<1KB) that are logically paired

to much larger blocks of data. Naturally, a set of simi-

lar files forms a cluster of compressed blocks and a file

system may contain any number of such logical “parti-

tions”. Lastly, these systems must support random access

to compressed blocks. The properties of small blocks
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and random access make these systems ill-suited for tra-

ditional linear compressors.

A deduplicating file system using a linear compressor

is forced to tradeoff access time with compression ra-

tio. The system can either use a single compressor, com-

pressing and decompressing all data for each request, or

reset compression state for each block. The first option

increases processing overhead while the second option

hurts compression ratios, especially for small block sizes

(Section 3.1).

Our insight here is that often blocks are related to some

other blocks, but not usually all. By leveraging a more

selective (i.e., shorter) dependency graph, NLC aims to

enable random access for small block sizes without sac-

rificing the compression ratio within related blocks.

2.2 Other Applications

There are many applications that process data with dis-

tinct logical boundaries that could benefit from (or re-

quire) random access.

Distributed SCM. Distributed Source Control Man-

agement systems [12, 18] are conceptually similar to

deduplication systems. SCM users often proactively

fork and merge development branches, and groups of

users may collaborate from geographically diverse areas.

These systems also use delta-encoding compression to

improve ratios for a file’s versioned history. The poten-

tial for small deltas between versions and the require-

ment for independent processing by edge users suggest

that an adaptive compressor supporting random access

could be very useful.

Collaborative Editing. Operational Transform Col-

laboration systems such as Google Wave [1] and oth-

ers [9, 21] use a DAG to represent disjoint state transi-

tions between a server and a client in a shared statespace.

Local actions are transmitted to the remote destination,

where the receiver “transforms”, or modifies, the action

to account for its own local actions that have occurred

in the interim, and then applies the received action lo-

cally. For high-traffic collaborations, compression can

significantly lower the overall bandwidth use. Specifi-

cally, incremental updates are often small and may come

from many disjoint users, suggesting predictable long-

lived state with random access.

Network Protocols. Google’s SPDY [3] protocol com-

presses HTTP headers and multiplexes multiple streams

onto a single TCP connection. Although TCP does not

deliver data out-of-order (i.e., random access), other pro-

tocols such as uTCP [15] and UDP [23] can deliver data-

grams out-of-order. Unfortunately, pairing SPDY with

one of these unordered protocols would not offer lower

latency due to the in-order requirement of SPDY’s linear

compressor (i.e., gzip).
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Figure 1: Resetting compression state to enable random

access of data blocks limits the compression ratio for

small block sizes.

3 Towards Non-Linear Compression

We present Non-Linear Compression as a system ab-

straction and API, independent of any particular com-

pression scheme or implementation. We first motivate

NLC by exploring the limitations of linear schemes in

modern systems.

3.1 Linear Compression Limitations

Storage and transmission systems compressing data

and/or metadata, typically face a tradeoff between com-

pressor effectiveness and the granularity at which data is

independently decompressible. There are two main com-

pression modes: stream mode and block mode, each of

which has significant limitations, as explained below.

In stream-oriented use, an application treats the com-

pressor as a sequential filter, feeding in an arbitrarily

large file or other data object incrementally and storing

compressed output as the compressor produces it. This

mode enables the compressor to build up state gradu-

ally over the entire input and eliminate redundancy at

large scales, but requires decompression to proceed in

the same fashion and limits potential processing paral-

lelism at the compressor or decompressor.

In block-oriented use, in contrast, an application pro-

cesses data one block or “application data unit” [7] at a

time, resetting the compressor to a fresh initial state be-

fore each block. Each block can then be decompressed

independently of other blocks, providing random-access

or out-of-order decompression and benefiting more fully

from parallelism on modern multicore hardware [10].

Block-oriented use limits the effectiveness of ad-

vanced compression algorithms depending on block size,

however. Figure 1 illustrates this limitation by compar-

ing the effectiveness of popular compressors when run

with a variety of block sizes on a large text file. As the

block size decreases, the compression ratio, defined as
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output size to input size, becomes higher. The loss of

compression history at each block reduces compression

effectiveness significantly because the compressor’s his-

tory identifies redundancy only within the given block.

Linear compressors excel at compressing huge

amounts of data, but for systems wishing to exploit

random or unordered access without compromising the

compression ratio, a new abstraction is needed.

3.2 Non-Linear Compression Overview

The key idea underlying non-linear compression (NLC)

is to eliminate the current “all-or-nothing” choice be-

tween deriving a given data block’s compression state

from all prior data in a linear sequence, or no prior in-

formation. Instead, the application specifies to an NLC

compressor explicitly, via an arbitrary directed acyclic

graph (DAG), which previously-compressed blocks a

given compressed block depends on. The NLC decom-

pressor likewise assumes that to decompress a given

block, the application will have already decompressed

the “prior” blocks it specified as dependencies. As a re-

sult, decompression of incomparable blocks in the DAG

are independent and fully parallelizable.

The DAG thus imposes a partial ordering relation on

data blocks compressed by the DAG nodes. Two nodes

in the graph are either ordered according to an ancestor-

descendant relationship, or not. Unordered nodes and

associated data can be processed completely indepen-

dently, during both compression and decompression.

This DAG representation provides three main benefits.

First, a non-linear compressor offers a single abstraction

to applications with multiple logical streams, avoiding

the burden of maintaining multiple compressors. Sec-

ond, independent branch paths can be processed concur-

rently, parallelizing I/O operations reading and writing

compressed data, or processing packets from unordered

network protocols [15]. Thus, NLC represents a natu-

ral progression in compression in line with the indus-

try’s overall “serial-to-parallel” shift. Third, adaptive

techniques can localize compression state within DAG

branches, allowing logically distinct branches to have

different probability distributions.

Although nominally similar, graph or tree-based com-

pression schemes [4, 5, 13], are fundamentally different

from NLC. Whereas these approaches compress data

structured as a tree (e.g., web graphs) using linear com-

pression, NLC structures the actual compression state as

a graph.

3.3 A Non-Linear Compression API

Applications will often compress data as an “applica-

tion data unit” (ADU), which is a logically contiguous

chunk of data. NLC gives applications fine-grained con-

trol of how to structure dependencies between consecu-

tive ADUs, whether linear or not. The NLCAPI provides

four main operations. The first operation creates a node,

while the other operate on a node.

Initialize. Initialization creates a single state node with

fresh internal compression state and no dependencies

(i.e., no parent nodes). The state node represents an in-

dependent compression point at the top of DAG. The ap-

plication can create multiple such nodes.

Compress. A state node compresses variable-length

ADUs. NLC guarantees that a given ADU will be de-

compressible “as a unit” once all causually prior ADUs

in the DAG have been processed. NLC compressors

may—but are not required to—support stream-oriented,

incremental or partial decompression within ADUs. Nat-

urally, two independent state nodes in the DAG can com-

press or decompress in parallel. Repeatedly compressing

ADUs with only a single state node forms a linear chain

of dependent compressed ADUs, much like regular se-

quential compressors. A state node can compress zero

or more ADUs. For adaptive schemes, compressing an

ADU modifies a node’s internal state.

Fork. Forking enables a state node to create a child

node with identical internal compression state. The par-

ent copies its internal state at the time of forking, which

may or may not be the same as the state the parent ini-

tially possessed. This enables nodes to compress an

ADU and then pass the resulting state on to a child.

A child maintains a dependency on its parent and all

of its parent’s ancestors, but not on any siblings (i.e.,

other children of the same parent). A parent that forks

two children in succession creates a divergent path in

the DAG similar to logically distinct streams. Forking

a child node locks the parent state node, preventing fu-

ture calls to “Compress”, but the locked node can still

fork children.

Merge. Merging combines the internal state of two

nodes and returns a new node with this combined state.

The new node has a dependency on both parent nodes,

as well as the union of their ancestors. Merging cre-

ates a new node, and locks each parent state node (as in

Fork). Merging effectively aggregates the compression

state, such as frequency tables or dictionaries, accumu-

lated along all paths from the root to these nodes.

4 An NLC Prototype

The previous section outlines our general NLC frame-

work, but many specific compression schemes could po-

tentially implement this API. We now present one sim-

ple proof-of-concept implementation based on Huffman

coding, and explore several alternative heuristics to im-

prove NLC’s uniqueMerge behavior. The techniques be-

low are simplistic and merely intended as starting points
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for designing future, more mature compression algo-

rithms in the NLC framework.

4.1 Adaptive Huffman Compression

Our current early prototype builds on simple adaptive

Huffman coding. The compressor’s inter-ADU state con-

sists of a 256-entry frequency table, describing the num-

ber of times a given input byte (“symbol”) has appeared

in causally “prior” ADUs in the DAG. For each ADU, the

compressor first builds a Huffman coding tree based on

the initial frequency table summarizing all prior ADUs.

The compressor then encodes each symbol in the cur-

rent block using the Huffman tree. As the compres-

sor processes each symbol, it updates its internal fre-

quency count to reflect this input, while leaving the Huff-

man code unmodified throughout the block. The com-

pressor thus adapts at block boundaries, enabling better

compression of future ADUs—although not the current

ADU—using shorter codes for more common symbols.

To enable the encoding of all input bytes/symbols a

priori using Huffman coding, the frequency count for

each input symbol must be greater than zero. Blocks with

no predecessors in the DAG are “compressed” with triv-

ial frequency tables in which all symbols have a count

of 1, yielding no compression in such “initial” blocks.

Thus, all compression in our current prototype derives

from inter-block adaptivity. The current prototype also

makes no provisions for compressing repeated byte se-

quences or context-sensitive frequency modeling; hence

we have no expectation that this scheme would compete

“head-to-head” with a mature linear compressor in typi-

cal (e.g., large-file) scenarios.

The Fork operation in our prototype simply copies the

frequency counts of data objects from the parent to the

new child state. Merge, in contrast, can be done in many

ways and involves tradeoffs discussed next.

4.2 Merging Behavior

Merging combines the frequency counts of two nodes.

Early indications are that the Merge operation improves

adaption of compression state and offers a convenient

synchronization mechanism for applications. We con-

tinue to investigate the usefulness of various merge

heuristics such as: complete history traversal to accrue

frequency counts; simple adding, or compounding, of

frequency counts; and taking the maximum count be-

tween two children. Frequency counts directly influ-

ence the construction of the Huffman coding tree, thus,

more accurate frequency counts produce better compres-

sion. In practice, the forking and merging behavior of

the application determines whether a complete heuristic

is needed, or whether a simpler approach (i.e., addition)

is accurate “enough”. We hope that more experience us-

ing the Merge operation will better elucidate its utility.

Figure 2: NLC state growth for various applications: (a)

Simple parallel compression, (b) Version control with in-

dividual branches for files or users, (c) Parallel window-

ing for out-of-order network protocols.

4.3 Preliminary Results

Using our first-cut NLC implementation, we ran several

experiments to see how NLC behaves with different ap-

plication behaviors. We make no claim that our design is

optimal, or even that our Adaptive Huffman implemen-

tation is competitive with real-world compressors such

as gzip that combine Adaptive Huffman coding with dic-

tionary methods. Rather, we explore different behaviors

and present these results as suggestive of the outcomes

when using NLC.

Figure 2 shows three different application behaviors

using green and red arrows to represent Fork and Merge

operations, respectively. Blue circles and numbered cir-

cles represent compression state and compressed data

blocks, respectively. Part (a) exploits NLC for simple

parallel compression. This behavior initializes a win-

dow, w, of base state nodes (or a single base state and

its w − 1 children). Treating this window of nodes as

individual compressors, each node compresses a logical

stream of ADUs independently. This behavior does not

use the API’s merge functionality.

Behavior (b) models a potential version control sys-

tem, where the base state forks children to be used in

compressing different files. Periodically, the children

nodes merge back with the base state, collecting com-

pression state. The base state can then fork new children

with adapted compression state for each file.

Lastly, behavior (c) models how a network applica-

tion might use a sliding window of state nodes to com-

press ADUs for use with an out-of-order protocol. The

receiver of a compressed ADU can always decompress

it, provided that the compressed ADU is no more than w

ADUs beyond the last successful decompression.

We wrote a simple application to test (a) and (c) above

by compressing a contiguous data stream into indepen-

dent ADUs of 128 bytes. Figure 3 shows the average

compression rate for different stream sizes. As expected,

the overall compression rates are worse than those in Fig-

ure 1 because our NLC prototype currently uses only

Huffman coding (without a deduplication algorithm).
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Figure 3: NLC compresses small ADUs independently

based on the forking and merging strategy.

The “simple parallel” and “simple windowed” data

series use a window of w = 3. Note that streams less

than or equal to 3x ADU experience no compression,

since the first w ADUs are compressed independently

before any adaptation takes place. The figure also shows

“normal linear”, which uses a single state node to repeat-

edly compress ADUs. Each of these ADUs is dependent

on the previous ADU.

4.4 Next Steps

Experiences with our early prototype suggest the impor-

tance of several design decisions that we plan to explore

further. For compression, our prototype uses Adaptive

Huffman coding, which operates by assigning shorter

code words to more frequently occurring data objects

(e.g., bytes). Adaptive Arithmetic coding [26] also uses

frequency counts and should be an easy addition. LZW-

style [19] deduplication uses word dictionaries, but is

conceptually similar for Fork and Merge operations.

Other considerations include “code spaces”, or multi-

byte data objects, as our current prototype only operates

on a byte granularity. Furthermore, probabilistic mod-

els [20] for code spaces introduce new possibilities for

automatically detecting application-specific data objects.

We also plan to investigate a “decay” model, phasing-

out frequency counts and/or code spaces in order to re-

act more quickly to a changing source. Related to decay

is garbage collecting obsolete state nodes; our prototype

performs no special garbage collection. Lastly, our pro-

totype assumes the application names or identifies com-

pression state nodes itself, but could, in the future, sup-

port some naming scheme.

5 Conclusion

Storage systems today often use linear compression algo-

rithms that cannot fully exploit modern parallel proces-

sors and protocols. To alleviate this tension, Non-Linear

Compression allows applications to structure data depen-

dencies in an arbitrary, hierarchical graph.
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